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e page 231 line 2: instead of “acting symmetrically on 1457 with three orbits 1457 23689A BCD”
read “acting symmetrically on 1357 with three orbits 1357 24689A BCD”

e page 236 figure 7: in the region corresponding to the basis 136, the dark angle should touch the
pseudoline 6 instead of the pseudoline 3.

e page 238: add a reference to “R.0O. Winder, Partitions of N-spaces by hyperplanes, STAM J.
Applied Math. 14 (1966), 811-818”

In this paper, R.O. Winder proves that the number of regions of an hyperplane arrangement
equals t(2,0). Independently of this reference, not well known by combinatoricists, several theorems
appeared some years later, from a particular case to a generalization. In 1973, R. Stanley published
a combinatorial interpretation of ¢(1 — \,0) in a graph for A = —1,—2,... For A = —1, we get that
the number of acyclic orientations of a graph equals ¢(2,0), a particular case of Winder’s result.
Some generalizations of Stanley’s theorem appeared two years later (1975): by T. Zaslavsky in
real hyperplane arrangements (hence rediscovering Winder’s result), and by M. Las Vergnas in
acyclic reorientations of oriented matroids (result equivalent to a generalization of Winder’s result
to pseudohyperplane arrangements).
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Abstract

A comparison of two expressions of the Tutte polynomial of an ordered oriented matroid, one as
a generating function of basis activities, the other as a generating function of reorientation activities,
yields a remarkable numerical relation between the number of bases and reorientations with given
activities. The object of the paper is a natural activity preserving correspondence with suitable
multiplicities between bases and reorientations, constituting a bijective proof of this relation. The
general construction will be published elsewhere. In the present self-contained paper, we consider
into details two particular cases of special interest: uniform oriented matroids and acyclic oriented
matroids of rank 3. In both cases, the construction is simpler than in the general case, but introduces
some of the main ideas. The correspondence is closely related to oriented matroid programming,
a combinatorial generalization of linear programming. The link is direct in the uniform case: for
unitary activities, the correspondence amounts to applying a program or its opposite to all bounded
regions of a simple arrangement of pseudohyperplanes. In the rank-3 case, equivalent to pseudoline
arrangements, a second step toward the general construction is made: optimizing two nested faces
with respect to two lexicographically ordered programs.
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1. Introduction

The Tutte polynomialof a matroid is a 2-variable polynomial invariant, introduced
for graphs by W.T. Tutte in [16], and generalized to matroids by H.H. Crapo in [4]. Up
to simple algebraic transformations, the Tutte polynomial of a matroid is equivalent to
its rank-generating functioni.e., to the generating function of cardinality and rank of
subsets of elements. The Tutte polynomial is a fundamental tool in the theory of numerical
invariants of matroids, and has numerous applications. We refer the reader Section 2 for
relevant definitions, and to [3] for an extensive survey on the subject.

Let M be a matroid on a linearly ordered set of elementBy a theorem proved by
W.T. Tutte for graphs [16], and extended to matroids by H.H. Crapo [4], we have

tM;x,y) =Y bijx'yl
i,j

whereb; ; is the number of bases @ff such thati basis elements are smallest in their
fundamental cocircuit ang nonbasis elements smallest in their fundamental circuit.
On the other hand, i is an oriented matroid, M. Las Vergnas has shown in [13] that

LM x,y) =0 ;27 7 xly/
ij

where o; ; is the number of reorientations o/ such thati elements are smallest
in some positive cocircuit ang elements smallest in some positive circuit. This last
formula contains several results of the literature on counting acyclic (re)orientations in
graphs, matroids, and regions in arrangements of (pseudo)hyperplanes[2,9-12,15,17] (see
Section 2).

Comparing these two expressions foM; x, y), we get the relation

0,',]' = 2i+jb,"j

for all i, j. A natural question arises of a bijective interpretation of this formula [13].
The problem is to define a correspondence between bases and reorientations, preserving
parametersi, j), calledactivities and compatible with the above formula. More precisely,

the desired correspondence should associate withja-activebasis ofM, a set of 2/

(i, j)-active reorientations, in such a way that each reorientatidd o in the image of a

unigue basis.

We construct in the forthcoming paper [8] (see also [6]) a correspondence with these
properties for general oriented matroids, ttenonical active correspondench the
present paper, we present into details two special cases, namely when the oriented matroid
is uniform (Section 3) and when it is acyclic of rank 3 (Section 4). In these two cases,
proofs are significantly simpler than in the general case, and particular properties occur,
justifying a separate treatment. Another case with specific properties, the graphical case, is
presented in [7].
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The canonical active correspondence can be constructed in several different ways.
A construction by decompaosition of activities reduces the problem to the casétaify—

i.e., (1,0) or (0, 1)—activities. In this case the correspondence can be characterized
intrinsically, or constructed by means of an algorithm. The general characterization
simplifies in the uniform and rank-3 cases. We prove in both cases that the canonical
active correspondence has the desired properties (Theorems 3.2, 3.8, 4.2, 4.6). As
frequently in the context of Tutte polynomials, a deletion/contraction construction exists
(Proposition 3.10 in the uniform case).

The canonical active correspondence is natural in several respects. In particular, its
geometric interpretation in terms of the topological representation of oriented matroids
establishes a close relationship with oriented matroid programmingMLbe a ranks
uniform oriented matroid on a linearly ordered gt {¢1 < ¢2 < ---}. We consider the
topological representation 8 by a simple arrangement of pseudohyperplanes with plane
at infinity e;. Let A C E \ {e1} be a (1, 0)-reorientation ofM. Then A being acyclic
corresponds to a regioR of the arrangement, and since its dual-orientation activity is
1 this regionR is bounded. Supposk is on the positive side af,. The matroid program
on the bounded regioR with plane at infinitye; and objective functioma,, nondegenerate
since the arrangementis simple, has a unique solution at a veste. Then the canonical
active correspondence associates witkthe basisB = {e1, b, ..., b}, whereb,, ..., b,
are ther — 1 pseudohyperplanes of the simple arrangement containiige hyperoctant
with apexv containingR is uniquely determined among th&2 hyperoctants defined by
by, ..., b, by the property of having a bounded intersection with

In the rank-3 case, the topological representation is an arrangement of pseudolines. The
geometric interpretation in terms of oriented matroid programming is similar, but more
involved for two reasons. First, the program may be degenerate, with an edge solution
instead of a vertex solution. Using a second smallest objective function, we can still
define uniquely the apex of the regionR. A second difficulty arises from the fact that
we may have any number of pseudolines throughence the vertex is not sufficient
to determineR. An edge of the border oR containingv has to be determined, by
optimization with respect to the linear ordering. We mention that for nonuniform oriented
matroids of rank> 4, not considered here, a further difficulty occurs whésna nonsimple
vertex ofR.

In view of the relatiorv1,o0 = 2b1,o, to prove bijectivity in the unitary case it suffices to
prove either injectivity or surjectivity. In Sections 3 and 4, we prove both, thus providing a
natural bijective proof of this formula. The case of genéraf) activities is derived from
the (1, 0) case by means of decompositions of activities for both matroid bases and oriented
matroids. Decompositions of activities are outlined in the case of graph orientations in
[14], appear partly for matroid bases in [5], and are described in [8] (see also [6]) in full
generality. In the special cases of the present paper, general definitions can be avoided by
means of direct constructions.

Finally, we mention that in the two particular cases of the paper the canonical active
correspondence fatl, 0) activities is uniquely determined by the bijectivity property and
an incidence preserving property (Propositions 3.10 and 4.7). This property does not hold
in general.
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2. Notation and ter minology

Let M be a matroid on a set of elemerisandB C E be a basis oM. Fore € E \ B,
we denote byC(B; e) the fundamental circuitof e with respect toB, i.e., the unique
circuit contained inB U {e}. Dually, fore € B, we denote byC*(B; ¢) the fundamental
cocircuit of e with respect toB, i.e., the unique cocircuit contained (& \ B) U {e}. For
e € E\ B ande’ € B, we have clearly’ € C(B; e) if and only if e € C*(B; ¢’), and then
C(B;e)NC*(B;e')= e, e'}.

We say that a matroid/ is orderedif its set of element<E is linearly ordered. The
notion of activitiesof a basisB in an ordered matroid/ is due to W.T. Tutte [16] in the
case of graphs, and to H.H. Crapo [4] in the case of matroids.ifitkenal activity:(B)
is the number of elementse B smallest in their fundamental cocircit(B; e¢), and the
external activitye (B) is the number of elementse E \ B smallest in their fundamental
circuit C(B; ¢). We say that a basiB with «(B) =i ande(B) = j is an(i, j)-basis We
denote byp; ; (M) the number ofi, j)-bases oM.

Spanning tree activities have been introduced by Tutte to generalize, in a self-dual way,
classical properties of the chromatic polynomial of a graph [16]. The theorem for graphs
extends to matroids [4], we have

HM;x,y) =Y bijx'yl.
iJ

This expression readily implies that the coefficients are independent from the ordering
of E. In recent textbooks, the Tutte polynomial of a matroid is defined by the closed
formula

((Mix,y)= ) (x = /D=y — gl
ACE

algebraically equivalent to theank generating functiorof the matroid, and the above
formula is proved by deletion/contraction of the greatest element (see [3]).

For usual definitions on oriented matroids, the reader is referred to [1]. If the mafroid
is oriented fore € E \ B, we denote byC(B; ¢) the unique signed circu@ contained in
B U {e} such that € CT, and dually fore € B, we denote byC*(B; ¢) the unique signed
cocircuit D contained in(E \ B) U {e} such thate € D*. We will sometimes, when it is
not ambiguous, make the abuse of notation consiting of using the same letter for a signed
circuit or cocircuit and its (unsigned) support.

An oriented matroid isicyclicif it contains no positive circuit, or equivalently, if every
element is contained in a positive cocircuit. Dually, an oriented matrditédly cyclicif
it contains no positive cocircuit, or equivalently, if every element is contained in a positive
circuit. An oriented matroid is acyclic if and only if the dual oriented matroid is totally
cyclic.

A basic result in the domain of the present paper, is a theorem of R. Stanley [15]: the
number of acyclic orientations of a graghis equal tor (C(G); 2, 0), whereC(G) is the
cycle matroid ofG [15]. This theorem has been generalized independently in 1975 by
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T. Zaslavsky to real spaces in terms of arrangements of hyperplanes [17] (see also [2]), and
by M. Las Vergnas to oriented matroids [10].

The paper [13] introduces a generalization of these results in terms afemtation
generating functionThe (primal) orientation activityof an ordered oriented matroid, or
O-activity, denoted by (M), is the number of elements smallest in some positive circuit.
The dual orientation activityof M, or O*-activity, denoted by* (M), is the number of
elements smallest in some positive cocircuit. We denote; byM) the number of subsets
A C E such thab*(— 4 M) =i ando(—s M) = j, where— 4 M denotes theeorientation
of M obtained by reversing signs o (this notation differs slightly from the notation
—aM used in [1]). If no confusion results, for brievity, we sometimes say that thd set
itself is a reorientation (we point out that different reorientations may produce the
same reoriented matroigd 4 M), and that a reorientatioA such thato*(—s4M) =i and
o(—aM) = j is a(i, j)-reorientation The definitions of0- and O*-activities have been
introduced in [13] in relation with the formula

t(M; x,y)= Zoi,j27i7jxiyj.
i,j

This formula implies thab; ; does not depend on the ordering, and that= 2i+fb,»,j.

The proof in [13] is by deletion/contraction of the greatest element. Notedtha o is

the number of acyclic reorientations f, hence the above formula generalizes results of
[2,10,15,17].

The proofs of Theorems 3.4 and 4.2 below use the equaity= 2b1 o, which is a
particular case of the above result for the orientation generating function. This special
case is originally due to C. Greene and T. Zaslavsky [9] for acyclic orientations of graphs
with adjacent unique source and sink (see [7]), or bounded regions in real spaces, a result
generalized in [11] to oriented matroids.

The paper uses extensively the topological representation of oriented matroids. Some
knowledge of oriented matroid programming is also necessary. We refer the reader to
[1, Chapters 5 and 10] for the needed prerequisites.

3. Uniform oriented matroids

We begin this section by stating the founding property of the general canonical active
correspondence. It simplifies in the cases studied in this paper.

Proposition 3.0. Let M be an oriented matroid on a linearly ordered $8t and B be a
(1, 0)-active basisoM.SetB={b1 <ba <---<b,}andE\B={c1 <c2 < -+ < Cy—r}.

Then there exist a unique pair of opposite reorientatidrsnd E \ A such that, setting
M' =— M =—p\aM,

(i) the covector<y, (B; b1), Cy,(B; b1) o Cy (B;b2), ..., Cy (B; by) o Cy(B; b2) o
---0 Cy,/(B; by) are positive, and
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(i) the vectorsCy (B; c1), Car(B; ¢1) o Capr(B; ¢2), ..., Capr(B; 1) 0 Cppr (B c2) 0+ -+ 0
Cu (B; cp—r) have the smallest element of E as unique negative element.

FurthermoreA is a (1, 0)-reorientation ofM.

The canonical active basis-reorientation correspondence is defin€d @nbases of
a general ordered oriented matraifl by associating with &1, 0)-basis of M the two
opposite(1, 0)-reorientations given by Proposition 3.0. The proof of Proposition 3.0 is less
than one page long. Nevertheless, we omit it in the present paper, since Proposition 3.0
is quoted here only as a motivation (it will appear in [8], see also [6]). Applying
Proposition 3.0 to the particular cases of uniform and acyclic rank-3 oriented matroids,
we will derive simplified definitions for the canonical active correspondence, first from
a combinatorial point of view, then in terms of the topological representation of oriented
matroids and of oriented matroid programming, yielding short direct proofs of bijectivity
(the general proof of bijectivity is about 4 page long). Of course, we could have given these
definitions from scratch. We find it interesting to show how they are related, and proceed
from the same general setting.

Two dual algorithms to construct(@, 0)-reorientationA associated with &1, 0)-basis
B by the canonical active correspondence are easy corollaries of Proposition 3.0.

Algorithm 3.0.1. (1) reorient inC}y, (B; b1) to get all signs positive
(2)fori=2,...,r reorientinCy,(B; b;) \ Uj<i Cy(B; b)) to get all signs opposite
to the reoriented sign of the minimal element @}, (B; b;) (this minimal element is
necessarily il J, _; Cy,(B; b))).
Algorithm 3.0.2. (1) reorient in Cy; (B; c¢1) to gete; negative and all other signs positive
(2)fori=2,...,r reorient inCp(B; ¢;) \ Uj<l- Cu(B; cj) to get all signs opposite
to the reoriented sign of the minimal element®@j;(B; ¢;) (this minimal element is
necessarily irUj<i Cu(B;cj)).

A rank+ matroid onn elements isuniformif its bases are alt-subsets of elements,
or, equivalently, if its circuits are al{r + 1)-subsets of elements, or, equivalently, its
cocircuits are allln — r + 1)-subsets of elements. The abstract rankaiform matroid
onn elements is denoted kY, ,. Uniform nonoriented matroids are very simple objects,
whereas uniform oriented matroids encompass a significant part of the general theory. In
the present context, they provide a simple intuitive approach to the intricacies of the general
case, specially from the linear programming point of view.

Let M be a uniform matroid on a linearly ordered get={e1 < e2 < ---}, andB be a
(1, 0)-active basis. As easily seen, we hag®) = 1 ande(B) = 0 if and only ife; € B and
e2 ¢ B. Then a(1, 0)-basisB is determined by the fundamental cocirchit= C*(B; e1)
of e1: we haveB = (E \ D) U {e1}.

We apply Algorithm 3.0.1 toB. Since M is uniform, as sets we havwé*(B; b;) =
(E\ B) U {b;} andC(B;cj) = B U {c;}. In the first step of Algorithm 1, we reorient
positively D = C*(B; b1 = e1) by reversing signs o®~; note that; ¢ D~. In stepi > 2,
we have reverse or not the signigfif and only if 5; has the same sign that the reorierigd
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in C*(B; b;). If e € DT then the sign oé, is not changed, hence the signbefis reversed
if and only if e, is positive in the original cocircuiCy, (B; b;), hence by orthogonality if
and only ifb; is negative inCy;(B; e2). The condition is reversed #, € D~. Summing
up, we get

Definition 3.1. Let M be a uniform oriented matroid on a linearly orderedBet {e; <
ez < ---}. We define the canonical active correspondence in the unitary case by associating
with a (1, 0)-active basisB the two opposite reorientatioasand E \ A defined by

A=(C"UD )\ {e1}

where D = C*(B; e1) and C = C(B; ep) if ex € DT respectivelyC = —C(B; ep) if
exe D™,

Note that in— 4 M the fundamental cocircui is positive and the fundamental (up to
opposite) circuilC hasC~ = {e2}. We now establish that the reorientation(1s0)-active
and that the correspondence is bijective.

Theorem 3.2. Let M be a uniform ordered oriented matroid. The canonical active
correspondence is a bijection from the setbf0)-active bases o#/ to the set of pairs of
opposite(1, 0)-reorientations ofM .

Remark 3.2.1. () We have —yuM = —p\4aM. Hence, the active basis-reorientation
correspondence defines a bijection from the setloD)-bases ofM onto the set of
reorientationgV’ of M with (1, 0) orientation activities.

(ii) The oriented matroid- 4 M depends only on the reorientation class\of Applied
to a reorientatioM’ of M the definition of Theorem 3.2 produces a ggtsuch that
—a M =—4M.

(iii) The linear ordering onE is effective only by its first two elements < e>.
A permutation of{es, es, ..., e,} does not change the active correspondenc¢lof)-
bases.

As well known, in an oriented matroid an element is either in a positive circuit, or in a
positive cocircuit, but not in both. This property is sometimes called the Farkads Lemma for
oriented matroids [1, Corollary 3.4.6].

Lemma 3.2.2. Let M be a uniform oriented matroid on a linearly ordered set with smallest
element;. The following properties are equivalent

(i) o*(M)=1;
(i) M contains a positive cocircuit, and a circuit with C~ = {e1}.

Proof. We show that (i) implies (ii). 1b*(M) > 0 then by definitionM contains a positive
cocircuit. The conditiom™ (M) = 1 means that all positive cocircuits contain It follows
that M contains no cocircuitD with D~ = {e1}, otherwise, by elimination, we get a
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Table 1
e S b B1\ B2 By \ By (B1N By) \ e E\(B1UB)\ f

C1 - + + + 0 + 0

—-C3 + - 0 0 - - 0

C +/0 0 + +/0 —/0 +/0 0

D 0 +/0 + +/0 —/0 0 +/0

—-Dq — — 0 0 — 0 —

D> + + + + 0 0 +

positive cocircuit not containing;. Hence by the Farkds Lemma for oriented matroids
applied to—., M, there is a circuiC with C~ = {e1}.

Conversely, suppos® contains a circuiC with C~ = {e1}, and letD be a positive
cocircuit. We haveC N D # ¢ sinceM is uniform. Ife; ¢ D then all elements i€ N D
are positive inC and inD, contradicting the orthogonality conditiono

Lemma 3.2.3. In a uniform oriented matroid, for any fixed f € E, there is at most one
positive cocircuitD containing two elements f such that the circuiC = (E\ D)U{e, f}
hasC~ = {e}.

Proof. Suppose, by contradiction, there are two different b&se®» containinge and not
containingf such that the circuit€; = B1U{f} andC, = BoU{ f} haveC] = C, = {e}
and the cocircuit®; = (E \ B1) U {e} and D, = (E \ B2) U {e} are positive.

Let b e B1\ B =C1\ C2 = D>\ D1. Let C be a circuit obtained fronC; and
—C> by eliminating f, such thath € C. We haveb € C C (C1 U C2) \ {f} = B1 U B>,
CN(B1\ B2) CCtandCnN(B,\ B1) C C~.LetD be acocircuit obtained from D; and
D> by eliminatinge, such thab € D. We haveb € D C (D1 U D) \ {e} = E \ (B1N B2),
DN (B1\ Bo) C DT andD N (B2 \ By) € D~ (see Table 1).

We haveb e CN'D C (B1\ B2) U (B2 \ B1). The signs ofC and D coincide on their
nonempty intersection, contradicting the orthogonality property.

Proof of Theorem 3.2. If ex € D~ then setC = —C(B; ep), if e2 € DT then setC =
C(B; e2). And setD = C*(B; e1). Using orthogonality, sinc€ N D = {e1, e2}, we have
e1 € C~ N DT, and the signs ofz in C and D are equal.

By definition, we havel = (C~ U D7)\ {e1}. It follows that(—4C)™ = {e1} and—4 D
is positive. Hence by Lemma 3.2.2, we hav¢— 4 M) = 1. In a uniform oriented matroid,
a circuit and a cocircuit have always a nonempty intersection, then using orthogonality,
— 4 M has no positive circuit. Hence4 M is a(1, 0)-reorientation ofM .

By Lemma 3.2.3, the mapping — A = (C~ U D7) \ {e1} is injective on the set of
(1, 0)-bases ofM. Hence this mapping is a bijection, since the numbe(loD)-bases
of M is equal to the number of subseisof E such thate; ¢ A and—4M is a (1, 0)-
reorientation of\f [11]. O

We now give atopological interpretation of Theorem 3.2. We recall that, by the Topolog-
ical Representation Theorem (see [1, Chapter 5]), the elef@ants, .. ., ¢,} of a rank#
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oriented matroidV can be represented by an arrangement of tame topologicaP)-
spheres, opseudospheregmbedded inS = $”~1, with open halfspheres distinguished as
efr ande; fori=1,2,...,n,in such a way that the set (9, 4, —}-vectors defined by
the signs of the pseudospheres on the vertices of the arrangement is identical to the set of
cocircuits ofM (see Example 3.2.1 below).

We denote bys™ the closed halfsphere defined bfy. We say thak; is theinfinity
pseudospherer plane at infinityof S, and we restrict the pseudospheegs. . ., e, to
their intersections withs™, called pseudohyperplaned he regionsof the arrangement
are the connected components of the complemestanthe union of the pseudospheres
{e1,e2,...,e,}. A region isboundedf its closure does not meet, or, equivalently, if
none of its vertices belongs tq. Thesign-vectornf a region is thg+, —}-vector defined
by the signs of the pseudospheres on any point of this region. The negative components of
the sign-vectors define a bijection between the regions of the arrangement and the subsets
A C E such that- 4 M is an acyclic reorientation of/. In this bijection, the subsets of
E suchthat; ¢ A and—4 M is a(1, O)-reorientation of\/, i.e., acyclic reorientations such
that every positive cocircuit contaims, are in 1-1 correspondence with bounded regions
contained inS™. The number of bounded regions containedtnis b1 o [9,11].

A (1,0)-basisB of M has the form{by = e1 < by < --- < b}, with e2 < bo. The
pseudohyperplanés, ..., b,} meetin a vertex of the arrangement. The sign-vectonof
is given by the fundamental cocircuit = C*(B; e1). Its & signs constitute the sign-vector
of the region containing in the sub-arrangement constituted by the pseudohyperplanes not
containingv. SinceM is uniform, the sub-arrangement constitutedbly= e1, bo, ..., b,
and e2 has a unique circuifb1 = e1, e2, b, ..., b,}, hence is homeomorphic to a real
arrangement. Thus, we may suppose thati = 2,...,r, is homeomorphic to the
coordinate hyperplane_1 = 0 of R™1 e, to the hyperplane; +xo +--- +x,1 =1,
ande; to the plane at infinity. Using this homeomorphism, cleably,. . ., b, divide S™
into 2"~ hyperoctantsvith apexv, and exactly one of these hyperoctants, calledtiire
hyperoctantcontains the unique bounded region determineebgndbo, .. ., b,.

The fundamental cocircuit @f; € B with respect taB correspond geometrically to the
vertex intersection oB \ b;. SetC = £C(B; e2) such that the sign af, in C is the same
than its sign inD. Namely, we haveC = C(B;ep) if v isin e; andC = —C(B; ep) if
v € e, . Forb; € B, using orthogonality, the sign &t in the fundamental circuit of; is
the opposite of the sign af, in the fundamental cocircuit af;. Hence the sign-vector
of the active hyperoctant in the sub-arrangement constituted by the pseudohyperplanes
containingy, is given by the signs i€ \ {e1, e2}. Note thate; € C~ N DT. Summing up,
the sign-vector of the unique region incidentt@nd contained in the active hyperoctant
is given by the signs i€ \ {e1} and D.

By Theorem 3.2, the active basis-reorientation correspondence associatds thigh
regionR defined by the reorientatioh = (C~ U D7) \ {e1}. Hence, we have proved

Proposition 3.3. The regionR of S* associated with &1, 0)-basisB of a uniform ordered
oriented matroid by the active basis-reorientation correspondence is the unique region
contained in the active hyperoctant definedbgnd incident to its apex.
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Fig. 1.

If the £+ sides are defined byfandamental regionpositive in all pseudohyperplanes,
thenA = (C~ U D7)\ {e1} is the set of pseudohyperplanes which have to be crossed to
reach the regiomR from the fundamental region. More precisely, permits to reach a
region R’ incident tov, andC~ \ {e1} \ D~ permits to go fromR’ to R. It follows from
properties of oriented matroids [1], that these crossings can be rearranged in a path from
the fundamental region t&8’, then toR (see below Example 3.3.1).

Example 3.3.1. The pseudoline arrangement of Fig. 1 is Ringel arrangement, a simple
arrangement of 9 pseudolines derived from a non-Pappus configuration. We recall that
Ringel arrangement is monstretchablarrangement (i.e., not combinatorially equivalent

to an arrangement of lines) with the smallest possible number of pseudolines. The
corresponding oriented matroid is uniform of rank 3 on 9 elements.

Signs are defined by a fundamental region of the arrangement (colored in lightgray,
bottom of Fig. 1). We recall that the sign of an elemein a cocircuitD = E \ {e, f}is+
if the fundamental region and the intersection of the pseudotiaes! / are not separated
by the pseudoline, and— if they are separated.

Let B =169. The regiorR image of B by the active correspondence is colored in dark
gray.

We read on Fig. 1 thab = C*(169 1) = 1234578.

Signs of the circuiC (169, 2) are defined by orthogonality, from the cocircuits meeting

follows thatC = —C (169 2) = 1269, since 2 D—.
By Theorem 3.2 we have = (C~ U D7)\ 1=234678.
As easily seen on Fig. 1, the path 238476 goes from the fundamental rediba-tb49,
then to R = 169 (there are other possible paths). In accordance with Proposition 3.3,
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the regionR is the unique region contained in the active quadrant determined by the
pseudolines 6 and 9, colored in mid gray in Fig. 1, and incident to their intersection.

Remark 3.3.2. Another way to define geometrically the regighassociated with the
given basisB is as follows. In Theorem 3.2, the reorientatidndefining R is chosen
so that in—4 M the cocircuitC*(B; e1) is positive, ande; is the only negative element
in C = £C(B; e2). By orthogonality,e and b; have opposite signs i€*(B; b;) for

i =2,3,...,r. Geometrically, this means, first, that the vertexiefined byC*(B; e1)

is incident toR. Then, the pseudo-simplgx determined by the pseudohyperplanegin
and contained in the positive side®fis identical to the hyperoctant opposite to the active
hyperoctant relatively te. The regionR being the region incident to and opposite ta®

is the region incident to contained in the active hyperoctant.

For an ordered uniform oriented matrald on E = {e1 < e» < -- -}, the active basis-
reorientation correspondence can be interpreted as a solution of an oriented matroid
program(M, e1, e2) (see [1, Chapter 10] for oriented matroid programming) on each
bounded region of the topological representationof

Proposition 3.4. With above notation, the vertexis the unique solution of the following
oriented matroid programmaximize the objective function defineddyif R is on the
positive side o0&, or minimize ifR is on the negative side e, on the bounded regioR
with respect to the infinity; .

The definition in Theorem 3.2 is in disguise the ‘simplex criterion’ of [1, Corol-
lary 10.2.8]. It follows that Proposition 3.4 is a reformulation of results of oriented matroid
programming. For completeness, we give a direct proof in the present context.

The ‘main theorem of oriented matroid programming’ [1, Theorem 10.1.13] states
that the graph of the program on a bounded region has at least one sink, unique in the
nondegenerate case. We recall that given a plane at inéinapd an objective functiosy
thegraph of the progranon a bounded regioR is the partially directed graph defined by
the vertices and edges &f such that an edge joining two adjacent vertices is directed in
the increasing direction of the objective function [1, Definition 10.1.16].

We introduce a closely related graph, more convenient for our purpose.

Definition 3.5. Theactive cocircuit graphG of an ordered oriented matroM is a directed
graph whose vertex-set is the set of (signed) cocircuitdZ/ofTwo verticesD; D2 are
adjacent inG if and only if £ \ D1 andE \ D, are comodular in/2 and D1 and D5 are
conformal signed sefs.

2 Two subsets of element$; X, arecomodular(short forconstitute a modular pajrin a matroidM if and
only if rps(X1) + ry(X2) = rp (X1 N X2) + rp (X1 U X2). The complementt \ D of a cocircuit D is an
hyperplane, i.e., a flat of rank— 1, of M, and conversely. Two different hyperplands and H, are comodular
in M if and only if the rank ofH1 N Ho isr — 2, i.e., if and only ifH1 N H> is a coline.

3 Two signed sets areonformalif and only if their signs coincide on their intersection.
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The simplest definition of edge directions i@ is in terms of the topological
representation oM. Let D1 D, be two cocircuits adjacent it’. Since E \ D1 and
E \ D, are comodular inv, thenL = E \ (D1 U Dy) is a coline ofM, i.e., a corank 2
flat. By properties of the pseudosphere arrangement represéutitige intersection of
the pseudospheres inis a pseudocircle ~ 1, such that the intersections biwith the
pseudospheres if \ L = D1 U D5 constitute an arrangement of O-spheres, i.e., pairs of
points, representing the rank 2 oriented matdidlL. Let {e < ¢’} be the lexicographically
minimal basis ofM/L. The two 0-spheres representiagand ¢’ in A divide A into 4
topological segments, each with one extremity belonging to the O-splerd the other
to the O-sphere’. We direct these 4 segments frefrtowardse. The conformal cocircuits
D1 and D, are combinatorially consecutive points xfi.e., each belongs to a 0-sphere,
and the interior of one of the two topological segments they definej, sagets no other
0-sphere of the arrangement. Therefdris contained in exactly one of the four segments
defined by ande’, sayo. We direct the edg®; — D> in the direction of consistent with
the direction ofo.

Example 3.3.1 (continued. Definition 3.5 is illustrated in rank 3 by Fig. 2. In this rank-
3 example, since 3 2 = 1, the pseudolines (and circtg) are both the pseudospheres
representing the elements of the matroid and the pseudocircles of Definition 3.5. The edges
of G are realized as topological segments of the pseudolines or pseudocircle.

For edgesD; — D> of G with D1 D> not both ine1 or both ine2, we havee = ¢1 and
¢’ = ez in Definition 3.5. For edge®1 — D, supported by1, we havee = e¢2 ande’ = es.
For edgesD; — D, supported by, we havee = e1 ande’ = e3.
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From Definition 3.5, we easily get a combinatorial definition, to be used in the proof
of Proposition 3.4, of directions of edges of bounded regions in the particular case of a
uniform oriented matroid. In this case, we have e ande’ = e).

Definition 3.5.2. Let D1 — D, be an edge of the active cocircuit graph such that
D1 N Dy. SinceM is uniform, we haveD1 \ D2| = |D2\ D1| =1, sayD1 \ D2 = {x1} and
D>\ D1 = {x2}. Then,we direct the edge fror, to D> if

— e2¢ D1 andes € Do,

— or, ez € D1 N Dy, and we haved(x1) = D1(x1),? or, equivalently,D(x2) = —D2(x2),
where D is the unique cocircuit obtained fro®; D, by eliminatinge1, such that
D(e2) = Di(e2) = D2(e2).

In terms of Definition 3.5, the cocircuiD is the extremity of the segment which
belongs to the 0-sphete

The active cocircuit graph coincide with the graph of a program on bounded regions
located on the positive side e, and has opposite edge directions on bounded regions
located on the negative side ef. In the active cocircuit graph, no distinction is made
between a minimum (a source in the program graph) and a maximum (a sink in the program
graph). This slight change has an important consequence in our context. In the general case,
several simultaneous linear programs have to be handled, with a mixture of minimizing and
maximizing [8] (see also [6]). For instance, in rank 3 (see Section 4), we have to consider
two matroid linear programs in the degenerate cases (with respecatale,,). The main
point is that vertices produced by the active basis-reorientation correspondence are always
associated with sinks of the active cocircuit graph, whereas this would not be the case for
program graphs, or their natural extensions to the whole set of cocircuits. We point out that
the active cocircuit graph depends on the ordering, but is invariant under reorientation.

Proof of Proposition 3.4. Let R be a bounded region. Since the active cocircuit gré@ph
is invariant under reorientation, without loss of generality we may supposertigthe
fundamental region of the arrangement. bgbe a vertex ofR, unique by Lemma 3.2.2,
such that the corresponding cocirci is positive, and the circufo = (E \ Do) U{e1, e2}
hasCy = {e2}. With Theorem 3.2, we know that there exist such a vertex: it corresponds
to the cocircuitD for the (1, 0)-basis associated witR.

Suppose there is an edd® — D> in the graphG such thatD; is a vertex ofR,
i.e., is a positive cocircuit. Sddg \ D2 = {xo} and D> \ Do = {x2}. Let D be the unique
cocircuit contained inE \ Do U D7 such thate; ¢ D ande, € DT. By Definition 3.5.2,
we havexp € D™. It follows that Co and D have opposite signs on their intersection
CoN D = {e2, x2}, contradicting the orthogonality property. (See Table 2.)

Let D1 be a positive cocircuit different fronDg. We show that inG the vertexD;
has at least one outgoing edge. We have D; sinceR is bounded. Ifex ¢ D4, then

4 Let X be a signed set, ande X. ThenX (e) denotes the sign af in X. We haveX (¢) = 1 if and only if
eeXT, X(e)=—1ifandonly ifec X~.



E. Gioan, M. Las Vergnas / Advances in Applied Mathematics 32 (2004) 212-238 225

Table 2

e1 €2 X0 x2 Do\ {e1, €2, xo} E\ (Do U D)
Do + + + 0 + 0
Dy + + 0 + + 0
D 0 + + - +/0 0
Co + — 0 + 0 +
Table 3

e1 €2 x D1\ {e1, ez} E\ D\ {x}

Cy - + - 0 +/0
Dq + + 0 + 0
D 0 + + +/0 0
Dy + + + +/0 0

for any positive cocircuitD, with e; € D, comodular withD1, we haveD; — Dy by
the first case of Definition 3.5.2. Supposee D;. Let C1 be the circuit supported by
(E \ D1) U {e1, ez} such thate; € Cf. We haveC1 U D1 = {e1, ez}, henceey € C; . By
Lemma 3.3.2, there is € C1 \ {e1, e2} such thatx € C; . Let D be the cocircuit supported
by D1\ {e1} U{x} suchthat € D*. Sincex € C1N D C {ey, x}, by orthogonality we have
C1N D ={ep, x}, hencee, € DT. The compositionD; o D is a positive covector. Hence,
by conformal compositioﬁ,there is a positive cocircuiD, such thatx € D,. We have

e1 € Dy sinceR is bounded. Sincge,x} € C; N D} andCy N Dy} C {e1, e2, x}, by
orthogonality, we have; € Dy = D; Therefore, by the second case of Definition 3.5.2,
we D1 — D». (See Table 3.) O

We point out that Theorem 3.3 and Proposition 3.4 provide as corollary an alternate
proof of the main theorem of oriented matroid programming in the nondegenerate case.
Conversely Proposition 3.4 and the main theorem of oriented matroid programming show
that the active correspondence is surjective.

We mention that the duality between circuits and cocircuits in Theorem 3.2 is related to
duality in linear and oriented matroid programming (see [1, Proposition 10.1.4]).

We now extend the active correspondence from(h@) case to the general case. The
main tool is a partition of set of elements of the oriented matroid, calétide partition
either with respect to a basis in an ordered matroid or with respect to the orientation in
an ordered oriented matroid. Active partitions permit to reduce gerieral activities
to (1,0) (or, dually, (O, 1)) activities, by means of associated minors, and to extend
consistently the canonical active correspondence ffbrd)-active bases to all bases [8]
(see also [6]). In the uniform case, active partitions and the corresponding construction can
be described directly very easily.

5 ThecompositionX o ¥ of two signed sets, Y is defined by X o ¥)* =X+t U (¥t \ X) and(X oY)~ =
X~ U (Y~ \ X). In an oriented matroid, any composition of circuits respectively cocircuits, is a conformal
composition of circuits respectively cocircuits [1, Proposition 3.7.2].
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Proposition 3.6. Let E = {e1 < e2 < --- < ¢,} be alinearly ordered set, ant{ ~ U,., be
a rank+ uniform matroid onk.

(i) AbasisB is either internal—if; € B, or external—ife1 ¢ B.

(iiy If e1 € B, andr < n, leti be the smallest integer such that.1 ¢ B, then«(B) =1,
and the internally active elements Bfare ey, e, . . ., ¢;, there is no externally active
elements. The basB\ {e1,...,e;—1} of M/{e1,...,e;—1} is (1, 0)-active.

The proof is easy and left to the reader. In the case of (ii), weacdive partitionwith
respect taB the partitionE = {e1} + {e2} +--- + {e;—1} + (E \ {e1, €2, ..., ei—1}).
It follows that for O< r < n, we have

Sm—i—1 &~ n—j-1
bi,O(Ur,ll)=Z< i ), bO,j(Ur,n)z Z (}’l— .>a

r_
i=1 j=1 J

andb; ;(U,,) =0fori, j > 0.
Hence, for O< r < n,

i= n—i-—1\ ; Gy n—j—1 j
(WUrmsx, )= (0 T+ Y ¥

i=1 - j=1 n=r—=j
Special cases(U, ,; x, y) = x" andt (Ugn; x, y) = y".

Proposition 3.7. Let M be an ordered uniform oriented matroid on a linearly ordered set
E={e1<ex<---<ey}.

(i) M is either acyclic or totally cyclic.
(i) SupposeM acyclic with o*(M) = i. Then the O*-active elements of\/ are
e1,e2,...,e;,andM/{ey, ez, ..., e} is (1, 0)-active.

The orientation active partition a¥/ is E = {e1} +{e2} + - -+ {ei_1} + {ei, €i11, ..., en)}.

Proof. (i) This elementary property is well known. We give a proof for completeness.
SupposeM contains a positive cocircuiD, and let V be any positive covector
containingD. SupposeE \ V # @, and lete € E \ V. The matroidM being uniform,
there is a cocircuiD’ such thatD’ \ V = {e} with e € D'". ThenV’ = V o D’ is a positive
vector with|V’| = | V| + 1. It follows inductively thatE is a positive covector o#/, i.e.,
M is acyclic.

(ii) It suffices to show that it; is O*-active inM thene;_; is alsoO*-active. Suppose
there is a positive cocircuiD with smallest elemend;. The matroidM being uniform,
D'=D\{e;} U{ej_1} is also a cocircuit. Replacing if necessapy by —D’, we may
suppose € D'T. ThenD o D’ is a positive vector oM, hence by conformal composition
a union of positive cocircuits a¥/. It follows thate;_; € D o D’ is in a positive cocircuit
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contained inD U D', hence necessarily the smallest element of this cocircuit, and therefore
is O*-active. O

In view of Theorem 3.2, Propositions 3.6 and 3.7, the following theorem follows.

Theorem 3.8. Let M be a uniform oriented matroid on linearly ordered det= {e1 <
e» <---<ey}, andB be a basis oM.
If «(B) =i > 1 (hencee(B) = 0), then the canonical active correspondence associates
with B the 2! (i, 0)-active reorientationsA € E of the formA = X U A’ and A =
XU (E\ A'), such thatX C {e1,e2,...,¢;_1} and A’ is associated with thél, 0)-basis
B\ {e1,e2,...,ei_1}in M/{e1,ea,...,ei_1} by the canonical active correspondence.
If e(B) =i > 1 (hence(B) = 0), then the canonical active correspondence associates
with B the 2! (0, i)-active reorientationsA C E associated with thei, 0)-active basis
E\ Bin M*.
Then, each of thg” reorientations ofM is associated with exactly one basisif

Remarks 3.8.1. (i) We point out that the canonical active correspondence not only
preserves activities, which was our initial requirement, but also preserves active elements,
and in fact preserves active partitions.

(i) In an oriented matroidM with o* (M) =i ando(M) = j, we define amctivity class
of reorientationsas the set of 2/ reorientations obtained by reversing signs on arbitrary
unions of parts of the orientation active partitionidf The activity classes of reorientations
obviously partition the set of”2reorientations ofM. In the previous definition, as in
the general case, the reorientations associated with a basis constitute an activity class of
reorientations. The canonical active correspondence can be seen as an activity preserving
bijection between bases and activity classes of reorientations.

(iii) As in Theorem 3.2, the ordering is effective only for the first elements. Changing
the ordering of elements with i > Max(r, n — r) does not modify the correspondence.

(iv) Propositions 3.4 and 3.7 provide the reverse correspondence.

Example 3.3.1 (continued. In Fig. 2, the basis associated with a region is indicated
within the region. A dashed angle indicates the vertex, solution of the linear program
on a bounded region. In a bounded region associated with a kasis, b3}, the two
pseudolines supporting the angle of the regionbarandbs.

We conclude this section by two properties of the active basis-reorientation correspon-
dence. The first one provides an inductive construction of this correspondence. The second
one exhibits natural properties determining uniquely the active basis-reorientation corre-
spondence for realizable uniform oriented matroids.

We have shown that constructing the active basis-reorientation correspondence on
bounded regions, i.e(1, 0) acyclic oriented matroid/, is equivalent to constructing the
sink of the active cocircuit graph on each bounded region, or, equivalently, the fundamental
cocircuit of e with respect to the basis associated with For short, we denote this
fundamental cocircuit by Op¥/).
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Proposition 3.9. Let M be a(1, 0) orientation active ordered uniform oriented matroid
on E ={e1 < ez < ---}. Let R be a bounded region representirdd in a topological
representation by a pseudosphere arrangement, et \ {e1, e2}, and—,R denote the
region obtained by crossing the pseudospheirem R if —, M is acyclic.

The applicatiorOptis uniquely determined by the following induction

(i) If |[E| =2, thenR is reduced to the optimal vertex, th@pt(M) = {e1, e2}.
(ii) If —.M is not acyclic, therOpt(M) := Opt(M \ e) U {e}.
(iii) If —. R is an unbounded region, thedpt(M) := Opt(M/e).
(iv) If —.R is a bounded region, there are two cases
— the optimal vertex of the region containirg in the arrangement obtained by
deletinge is incident toR, thenOpt(M) := Opt(M \ e) U {e};
— the optimal vertex oR is on the pseudosphesethenOpt(M) := Opt(M/e).

Proof. The proofis by induction oihE]|.

(i) The proposition is obvious wheiE | = 2. SupposeE| > 3.

Since the fundamental cocircuits Bf\ {e} in M /e if e € B, respectively circuits o/ \ e
if e ¢ B, are the fundamental cocircuits, respectively circuitsBah M with e removed,
it follows immediately from the definition that & € Opt(M) then OptM) = Opt(M /e),
and ife ¢ Opt(M) then OptM) = Opt(M \ e) U {e}.

(i) If —.M is not acyclic there belongs to every positive cocircuit 1.

By the definition of the active cocircuit graph, I and D’ are comodular positive
cocircuits ofM ande is both inD and D’ then the edgd — D’ is directed fromD to D’
if and only if it is directed fromD \ {e} to D’ \ {e} in M \ e. So the active cocircuit graph
M restricted to positive cocircuits @ is the same as i \ e.

Then by Proposition 3.4 and Definition 3.5 Qpt) = Opt(M \ e) U {e}.

(iv) Since there is a unique optimal vertex Q) for any (1, 0)-uniform oriented
matroid, it follows from our preliminary observation and the induction hypothesis, that
we have{Opt(M), Opt(—. M)} = {Opt(M/e), Opt(M \ e) U {e}}.

Hence, if OptM \ e) U {e} is a positive cocircuit oM and we have Opd/), otherwise
Opt(—. M) is a positive cocircuit and we have Qpf) = Opt(M/e).

(iii) A bounded region inM \ e either is a bounded region i case (i), or contains a
bounded region i/ and its opposite region with respectdcase (iv).

Hence by the induction hypothesis thego(M \ e) cocircuits of M containinges, e,
ande have been associated with regions in cases (ii) and (iv). So the remaining cocircuits,
which are optimal for a regioR such that-, R is unbounded, must containthat is must
satisfy OptM) = Opt(M/e). O

The algorithm of Proposition 3.9 is a set-theoretical extension of the numerical
deletion/contraction relation(M; 1,0) =t(M \ e; 1,0) + (M /e; 1, 0). Its proof is based
on well-known geometrical observations from linear programming: the suppression of
a variablee corresponds to the contraction of an elemenand the suppression of a
constrainte corresponds to the deletion of an elementere this linear programming
technique is applied simultaneously to all bounded regions.
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This deletion/contraction procedure can be generalized to any oriented matroid [8] (see
also [6]). It provides an alternate construction of the canonical active basis-reorientation
correspondence, based on comparisons of activities and adjacency properties in place of
optimization properties and active partitions.

We say that a mapping from the vertices, or, equivalently, signed cocircuits, of an
oriented matroid to the regions of its topological pseudosphere representatiocidénce
preservingif a vertex is always incident to its image region. Uétbe the set of vertices
of an ordered oriented matroid not contained in the pseudospheegsor es. If M is
uniform, the active basis-reorientation correspondence induces an incidence preserving
bijection from the seV onto the set of bounded regions: a cocirdnisuch that, e2 € D
with e; € DT is mapped to the bounded region éﬁi associated with the€l, 0)-basis
B = DU {e1}.

Proposition 3.10. Let M be an ordered uniform oriented matroid dh= {e1 < ez < ---}.
If the active cocircuit graph contains no directed cycle in thelsef cocircuits containing
bothe; andey, then there exists a unique incidence preserving bijection froonto the
set of bounded regions. Otherwise, there are at least two such bijections.

Proof. Let f be anincidence preserving bijection frdfmonto the set of bounded regions.

Suppose the active cocircuit graph is acycliclonThen, it induces an ordering dn.
The bijectionf induces a mapping from V into itself: we mapv € V to the unique sink
g(v) of the bounded regiorf (v). The matroidM being uniform, a vertex is a sink in at
most one bounded region. Hengds a bijection fromV onto itself. Sincef preserves
incidences, by properties of oriented matroid programming [1, Chapter 10], the bijection
g is augmenting: we have < g(v) for all v € V. Plainly, there is unique augmenting
bijection in a finite ordered set, namely the identity. It follows thas the identity, hence
f is unique.

Suppose now that there is a directed cyagje—~ v1 — --- — v, = vg of the active
cocircuit graph withug, v1, ..., ve € V. Let R; be the unique bounded region with (unique)
sinkv; fori =1,2,...,£. Then, sinceV is uniform, the vertex,_; is also incident taR;
fori =1,2,...,£. Hence the mapping’ defined byf for v € V \ {vo, v1,..., v} and
f'vi—1)=R; fori =1,2,...,¢is a second incidence preserving bijection fréhronto
the set of bounded regionsO

The active cocircuit graph is in particular acyclic when the uniform oriented matroid
is realizable i.e., arises from a configuration of points in real space. In general
uniform oriented matroids the active cocircuit graph may contain directed cycles. In
fact, one important difficulty in oriented matroid programming, as compared to real
linear programming, is that the graph of a program may contain directed cycles. The
smallest example is the oriented matr&@#M(8), uniform of rank 4 on 8 elements [1,
Example 10.4.1]. An oriented matroid prograM, e1, e2) on an acyclic oriented matroid
M with infinity planee; and objective functior; is saidEuclideanif the graph of the
program contains no directed cycle [1, Theorem 10.5.5],ramdEuclidearotherwise.
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4. Acyclic oriented matroidsof rank 3

By the Topological Representation Theorem for oriented matroids, the acyclic reori-
entations of a rank-3 oriented matroid are represented by the regions of an arrangement
of pseudolines in the plane. Our purpose in this section is to describe geometrically the
canonical active basis-reorientation correspondence for acyclic ordered oriented matroids
of rank 3 in terms of pseudoline arrangements. @#90)-bases we derive from the combi-
natorial constructions given by Proposition 3.0 and its corollaries a geometric construction
of the corresponding region. Then we give a simple direct proof of the bijectivity property.
For general internal bases, the correspondence is obtained from certain minors. Up to par-
allel elements, these matroids are uniform of rahR, hence it suffices to apply results of
Section 3 in very simple cases.

The constructions of this section constitute a first approach of the degenerate cases,
and of the flag programming introduced in the general case [8] (see also [6]). In terms
of optimization, in the rank-3 acyclic case, the basis associated with a bounded region is
optimal for an extended linear program with respect to the total order. A second objective
function is introduced to define the optimal vertex when the first one insufficient in certain
degenerate cases. The optimal bgsis< e, < ¢,} a basis defines two nested faegs e,
ande, which have to be optimized. Intuitively, the canonical active correspondence can be
thought of as @henomenon of attractiomith respect to the total order related to activities
(see Fig. 7). We point out, however, that certain intricacies of the general case do not occur
in rank 3. In an arrangement of pseudolines a region is a polygon, hence, as in the uniform
case, all its vertices are simple, i.e., incident to a number of facets equal to the dimension.

Example 4.1.1. Let D13 be the configuration of 13 points in the projective plane
shown in Fig. 3. The configuratio®;3 is obtained by adding 3 pointBCD to a

Fig. 3.
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Desargue configuration on 1234567289ts automorphism group is of order 24, acting
symmetrically on 1457, with 3 orbits, namely 1457 23883CD.
The pseudoline arrangememis contains all cases of Definition 4.1 below.

The Tutte polynomial oD13 is

1(D13; x, y) = y0+ 3y 4+ 6y8 4+ 10y " + 15y + 21y° + 28y* + x3 + 9xy? + 36)°
+ 10x2 4 22xy + 36y? + 24x + 24y.

The matroid D13 hast(D13; 1,1) = 246 bases, and we hava o = 24 bpo = 10
b3.0 = 1. The pseudoline arrangement of Fig. 3 hast2210+ 4.1 = 48 regions, with
24 bounded regions.

Definition 4.1. Let M be an ordered oriented matroid on aBet {e; < e2> < ---}. Without

loss of generality, we may suppose thdthas no 1- or 2-circuits (since a matroid with a
loop has nq1, 0)-basis, and two parallel elements appear together and have the same sign
in all cocircuits of an acyclic matroid). L&t = {e1 < e, < ¢;} be a(1, 0)-base ofM.

We havee,, > ez, ande,, is the smallest pseudoline 8f containing the intersection
v of the pseudolines, ande, (otherwise this smallest elemeatvould be smallest in
the circuit{e, e, e, }, hence externally active with respect®). In particular,e, does not
containv.

As in Section 3 we obtain the definition of the desired correspondence by applying
Algorithm 3.0.1. There are four cases. We will give details for the first one, and leave the
other three to the reader. In each case we defingcéive quadrantQ, intersection of 2
half-planes defined by,, ¢,. Thenthe regionR associated withB by the active basis-
reorientation correspondence is the region of the arrangement contain@diimcident to
the vertexw = e, N ey, and having one of its two edges incidenbteupported by, .

For short, we say that;, e, areparallel if {e1, ek, e¢} is a circuit of M. We denote
by e, the smallest element, > ¢2 which is not parallel taep. Then,{es, e2, e, } is the
lexicographically smallest basis.

(1) Bothe, ande, are not parallel toe; (Fig. 4, bases 147, 148, 149, 14A, 14C, 157, 158,
159, 168, 16B of Fig. 6).

By the hypothesig, e, not parallel toe;, we havee; € D = C*(B; e,) andes €
D3 = C*(B; eq). At the first step of the algorithm, we reoriebi = C*(B; e1) positively.
The regionR is one of the regions incident to the vertex= vy = ¢, N e, corresponding
to D;. Second step: we reorient dx \ D; so that after reorientatio, = C*(B; e))
is positive onD; \ D1 and has; negative. The vertex, € e; N e, corresponding td;
is on the side ok, opposite to the side oR, therefore the edge of the arrangement
corresponding to the positive covectdi o D>, which is the edge o, incident tov = vy
directed towardy, is the edge oé, incident tov directed toward, Ne,. The regionR is
one of the 2 regions incident to the edgeThird step: we reorient o3 \ (D1 U D2) S0
that after reorientatio®s = C*(B; ¢, ) is positive onD3z \ (D1 U D7) and hag» negative.
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(1) B=157 (2a) 138

Fig. 4.

The vertexvs € e1 N e, corresponding td3 is on the side oé, opposite to the side ak.
The regionR corresponding to the positive covectdi o D, o D3, contained in the side
of ¢, containingvs, is now completely determined.

The active quadran@ is the intersection of the closed halfplane definedehyand
containing the intersection af, ande,, and the closed halfplane defined by and
containing the intersection af, ande,. The intersection of@ with e, is a bounded
(pseudo)segment. Example—Fig. 4(1).

Let the fundamental regioRy be the triangle with sides 1 2 4, and considee
157. We apply Algorithm 3.0.1. We havB; = 1234684ABC, D, = 234589CD, and
D3 = 2347894 BD. First reorientationD; = 23688. We getD, = 2345%89C D. Second
reorientation:D3 \ D1 = 59. We getD3 = 2349ABD. Third reorientation:D; \
(D1 U Dy) is empty. The reorientation associated wihis 235689B. It can easily be
checked on Fig. 4(1) that the path 236B859 goes from the fundamental region to the shaded
region associated witB = 157 by the above definition.

There is a degeneracy if at least oneegfor ¢, is parallel toe,—then, exactly one,
since{ez, e,, ¢,} is a basis. In this case, the definition@fuses the pseudoling,. There
may be two subcases, depending on whethisrcontained ire,, or not.

(2a) e, parallel to ez, v not contained ire,, (Fig. 4, bases 136, 137, 138, 139, 13A, 13C
of Fig. 6).

Thene, is not parallel taep, and we have, # e, sincev ¢ e,.

The active quadran is the intersection of the closed halfplane defined iy
containing the intersection e ande,, and the closed halfplane defineddycontaining
the intersection o, ande,, .

(2b) e, parallel to ez, v not contained ire,, (Fig. 5, bases 15D, 16D of Fig. 6).
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(2b) 16D (3) 13B

Fig. 5.

Thene,, is not parallel taep, and we have, # e, sincev ¢ e,.

The active quadran is the intersection of the closed halfplane defined djy
containing the intersection ep ande,, and the closed halfplane defineddycontaining
the intersection oé, ande,,.

(3) ey or e, parallel to ey, v contained ire,, (Fig. 5, bases 135, 13B of Fig. 6).

If v ee, ande, parallel toep, thene, is nonparallel teep, hencem = p sincep is
the smallest pseudoline containingbut thene, would be internally active. Henas, is
parallel toe; ande, is not parallel tae, implyinge, > e,, otherwisez, would be internally
active.

The active quadran is the intersection of the closed halfplane defined &y
containing the intersection ep ande,, and the closed halfplane defined gycontaining
the intersection oé, ande,, .

We point out that in Definition 4.1 two oriented matroid programs are used (see
Section 3). In both the line at infinity ig . The first one has objective functien. When
the set of solutions is 1-dimensional—the so-called degenerate case—a second program
with objective functiore,, is used to obtain a unique vertex.

Theorem 4.2. The active basis-reorientation correspondence maps bijectively the set of
(1, 0)-bases onto the set of bounded regions of the pseudoline arrangement.

Proof. We prove that the mapping is injective. Suppose there are two lasege; <
ep <eq) and B’ = {e1 < e,y < e/} mapped to a same regiak by the active basis-
reorientation correspondence given by Definition 4.1.

In the case of a pseudoline arrangement, as already observed in Section 3, the cocircuit
graph can be identified with the graph defined by the pseudolines. To obtain the active
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cocircuit graph, we direct the edges by means of Definition 3.6. Figure 6 shows the graph
for D13 with all edge directions. To prove Theorem 4.2, it suffices to direct the finite edges,
i.e., with no vertex orep: from e; towardse; for edges supported by pseudolines not
parallel toez, from e, towardse; for edges supported by pseudolines parallebto

In a bounded regionR associated with a1, 0)-basis by the correspondence of
Definition 4.1, the two edges incident toare directed towards. It follows easily from
topological properties of pseudolines (the Jordan curve theorem) that all vertiges of
different fromv have outgoing edges. Hence, a regi®nimage of at least one basis
determines the vertex. It follows thate, respectivelye;, is the smallest pseudoline
containingv (otherwise this smallest pseudoline would be externally active with respect
to B respectivelyB’). In particulare, =e,y .

Suppose,; # e, . Then the 2 edges dt incident tov are supported by, ande,. If
bothe, ande, are not parallel t@, then B and B’ are both in one of the cases (1), (2a)
or (3) of Definition 4.1. In case (1) cannot be of the same side ¢hame,, for bothe,
ande, . In case (2a) cannot be of the same side than e, for bothe, ande, . In case
(3) cannot be of the same side thgnN e, for bothe, ande, . If one ofe,, e(’] is parallel
to e2, saye,, thenB is in case (2b) an®’ in case (1), and we have also an impossibility.

As in the proof of Theorem 3.3, injectivity implies bijectivity sinego = 2b10[11]. O

Figure 6 illustrates the proof of Theorem 4.2. It shows edge directions in the active
cocircuit graph. The shade of gray indicates the relevant case of Definition 4.1. The basis
given by the active correspondence is written within each bounded region.

We complete Theorem 4.2 by proving directly the surjectivity of the correspondence.
We need this proof to reverse locally the correspondence, i.e., to be able to write the
basis associated with a bounded region of a pseudoline arrangement without computing
the whole correspondence.
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Lemma 4.2.1. Every restriction of the active cocircuit graph to a region of the pseudoline
arrangement has a unique sink.

Proof. As already observed in Section 3, the bijectivity of the active correspondence on
bounded regions implies the ‘main theorem of oriented matroid programming,’ i.e., the
existence of a sink in all bounded regions in the nondegenerate case or of a ‘sink edge’
parallel to the pseudoling in the degenerate case.

Conversely, Lemma 4.2.1 can be obtained from oriented matroid programming. But a
direct proof is an easy exercise on pseudoline arrangements.

Proof of surjectivity. Let R be a bounded region of the pseudoline arrangement contained
in ef. We have do define €, 0)-basisB = {e1 < e, < ¢4} such that theR is the image of
B by the active basis-reorientation correspondence of Definition 4.1.

Let v be the sink of the restriction t® of the active cocircuit graph given by
Lemma 4.2.1¢ < ¢’ be the two edges ak incident tov. Necessarily the two pseudolines
e, ande, containv, the pseudoline,, is smallest among the pseudolines containingnd
we havee, =e ore;, =e'.

If e =ep, then necessarily’ = ¢,. Suppose, < e. We distinguish several cases.

(@) ep is not parallel toes.

(al) If bothe and ¢’ are not parallel toes, let QO respectivelyQ’ be the active
quadrant defined by the pseudolingsande respectivelye’ as in case (1) one
Definition 4.1. Exactly one ofQ or Q' containsR: we sete; =¢ if R C Q
respectivelye, =€’ if RC Q'.

(a2) If e respectivelye’ is parallel toeo, settinge, = e respectivelye, = ¢’, we have
case (2b) of Definition 4.1.

(b) e, is parallel toes.

Thene ande’ are not parallel te,. Lete,, be the smallest pseudoline not paralle¢to

(b1) If v is notine,, thene, is defined as in (al), with active quadrants defined by case
(2a) of Definition 4.1.

(b2) If vis one,, thene, is defined as in (al), with active quadrants defined by case (3)
of Definition 4.1. O

We complete the description of the canonical active basis-reorientation correspondence
by considering internal bases of activities 2 and 3. As in Section 3 for the general uniform
case, the construction is done by means of active partitions defined directly in each case. Up
to parallel elements, the relevant minors, of rahR, are uniform, and results of Section 3
apply in very simple cases. We omit proofs. In each case, we indicate the relevant bases
of D13 in Fig. 7. As in Definition 4.1, we denote kyy, the smallest pseudoline such that
{e1, e2, e} IS NOt A circuit.

Definition 4.5. (1) B = {e1 < e2 < ¢4} (activity 2).
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Let L be the set of pseudolines containing the intersedtion’} of the pseudolines;
ande, of B.

(1a) ¢4 is the smallest element &f\ {e1} (bases 125, 127, 128, 129 of Fig. 7).

We have to consided’ obtained fromM /e; by deleting all nonsmallest elements in
each parallel class (thective partitionis E = {e1} + {e2, e3, .. .}). This oriented matroid
is uniform with rank 2.

In this casee,, does not contaim (otherwisem = g ande, is internally active). One
region R is incident tov, bounded by a pseudosegment not mee#ng e, with one
extremity iney N e, and the other iry Ne,,. The other region is- g\ e, R.

(1b) The smallest element &f\ {e1} is e, and we have, # ¢, (bases 126, 12A, 12B,
12C of Fig. 7).

We have to consider!’ = M (L). The active partition i = L + E \ L. This oriented
matroid is uniform with rank 2. One regioR is incident tov, bounded bye,, and is
contained in the side @f; containinge,. The other region is-g\ R.

(2) B ={eq, em, eq4} (activity 2) (bases 134, 14D of Fig. 7).

As in case (1b), the active partition = L + (E \ L). One regionR is incident tov,
bounded by,, and contained in the side ef containinge,. The other region is-g\z R.
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(3) B =/{e1,e2, e} (activity 3) (base 124 of Fig. 7).

Let L be the set of pseudolines containing the intersection of the pseudelinese;.
The active partition i€ = {e1} + (L \ {e1}) + (E \ L). The 4 regions associated within
ef are those incident tey N e, and bounded by;.

Figure 7 shows the canonical active basis-reorientation correspondence for internal
bases and acyclic regions. The gray sector inside a bounded region indicates the vertex
v of Definition 4.1 and the pseudolirg (which supports it, whereas the other edge of the
region incident ta does not).

Theorem 4.6. The canonical active basis-reorientation correspondence between the
internal bases of an ordered oriented matroid of réhéind its acyclic reorientations has
the required multiplicities.

We omit the proof. We end this section by the counterpart of Proposition 3.9 for rank-3
matroids. Either by an easy direct proof, or by using the fact that a rank-3 oriented matroid
is Euclidean [1, Chapter 10], it can be shown that the active cocircuit graph of a rank-3
oriented matroid has no directed cycles.

Proposition 4.7. Let M be a rank3 ordered oriented matroid o = {e1 < ez < ---}. The
active basis-reorientation correspondence f{ar0) activities is uniquely determined by
the following two properties.

(i) The correspondence induces a bijection betwdef) bases and bounded regions of
the pseudoline arrangement representivig

(i) Let B ={e1 <e, < ey} With e, > e be a(l, 0)-basis, andR be the bounded region
image ofB. Then, the intersection of the pseudolirgsand e, is a vertex incident
to R, and the pseudoling, supports an edge at.

Proof. The proof of Proposition 4.7 is similar to the proof of Proposition 3.6.

In terms of programming, in the rank-3 acyclic case, the basis associated with a bounded
region is theoptimalbasis for an extended linear program with respect to the total order.
The elemeng,, is used to define the optimal vertex whendoes not suffice. Moreover,

a basis defines two nested faegsande, N e, which have to be optimized, yielding a first
example of flag matroid programming.
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