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Abstract

A comparison of two expressions of the Tutte polynomial of an ordered oriented matroid, o
a generating function of basis activities, the other as a generating function of reorientation ac
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activities. The object of the paper is a natural activity preserving correspondence with s
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general construction will be published elsewhere. In the present self-contained paper, we c
into details two particular cases of special interest: uniform oriented matroids and acyclic or
matroids of rank 3. In both cases, the construction is simpler than in the general case, but int
some of the main ideas. The correspondence is closely related to oriented matroid progra
a combinatorial generalization of linear programming. The link is direct in the uniform cas
unitary activities, the correspondence amounts to applying a program or its opposite to all bo
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1. Introduction

The Tutte polynomialof a matroid is a 2-variable polynomial invariant, introduc
for graphs by W.T. Tutte in [16], and generalized to matroids by H.H. Crapo in [4]
to simple algebraic transformations, the Tutte polynomial of a matroid is equivale
its rank-generating function, i.e., to the generating function of cardinality and rank
subsets of elements. The Tutte polynomial is a fundamental tool in the theory of num
invariants of matroids, and has numerous applications. We refer the reader Sectio
relevant definitions, and to [3] for an extensive survey on the subject.

Let M be a matroid on a linearly ordered set of elementsE. By a theorem proved b
W.T. Tutte for graphs [16], and extended to matroids by H.H. Crapo [4], we have

t (M;x, y)=
∑
i,j

bi,j x
iyj

wherebi,j is the number of bases ofM such thati basis elements are smallest in th
fundamental cocircuit andj nonbasis elements smallest in their fundamental circuit.

On the other hand, ifM is an oriented matroid, M. Las Vergnas has shown in [13] t

t (M;x, y)=
∑
i,j

oi,j2−i−j xiyj

where oi,j is the number of reorientations ofM such thati elements are smalle
in some positive cocircuit andj elements smallest in some positive circuit. This l
formula contains several results of the literature on counting acyclic (re)orientatio
graphs, matroids, and regions in arrangements of (pseudo)hyperplanes [2,9–12,15,
Section 2).

Comparing these two expressions fort (M;x, y), we get the relation

oi,j = 2i+j bi,j

for all i, j . A natural question arises of a bijective interpretation of this formula [
The problem is to define a correspondence between bases and reorientations, pre
parameters(i, j), calledactivities, and compatible with the above formula. More precis
the desired correspondence should associate with a(i, j)-activebasis ofM, a set of 2i+j

(i, j)-active reorientations, in such a way that each reorientation ofM is in the image of a
unique basis.

We construct in the forthcoming paper [8] (see also [6]) a correspondence with
properties for general oriented matroids, thecanonical active correspondence. In the
present paper, we present into details two special cases, namely when the oriented
is uniform (Section 3) and when it is acyclic of rank 3 (Section 4). In these two c
proofs are significantly simpler than in the general case, and particular properties
justifying a separate treatment. Another case with specific properties, the graphical c
presented in [7].
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The canonical active correspondence can be constructed in several different
A construction by decomposition of activities reduces the problem to the case ofunitary—
i.e., (1,0) or (0,1)—activities. In this case the correspondence can be characte
intrinsically, or constructed by means of an algorithm. The general characteriz
simplifies in the uniform and rank-3 cases. We prove in both cases that the can
active correspondence has the desired properties (Theorems 3.2, 3.8, 4.2, 4
frequently in the context of Tutte polynomials, a deletion/contraction construction e
(Proposition 3.10 in the uniform case).

The canonical active correspondence is natural in several respects. In particu
geometric interpretation in terms of the topological representation of oriented ma
establishes a close relationship with oriented matroid programming. LetM be a rank-r
uniform oriented matroid on a linearly ordered setE = {e1 < e2 < · · ·}. We consider the
topological representation ofM by a simple arrangement of pseudohyperplanes with p
at infinity e1. Let A ⊆ E \ {e1} be a (1,0)-reorientation ofM. ThenA being acyclic
corresponds to a regionR of the arrangement, and since its dual-orientation activit
1 this regionR is bounded. SupposeR is on the positive side ofe2. The matroid program
on the bounded regionR with plane at infinitye1 and objective functione2, nondegenerat
since the arrangement is simple, has a unique solution at a vertexv ofR. Then the canonica
active correspondence associates withA the basisB = {e1, b2, . . . , br}, whereb2, . . . , br
are ther − 1 pseudohyperplanes of the simple arrangement containingv. The hyperoctan
with apexv containingR is uniquely determined among the 2r−1 hyperoctants defined b
b2, . . . , br by the property of having a bounded intersection withe2.

In the rank-3 case, the topological representation is an arrangement of pseudolin
geometric interpretation in terms of oriented matroid programming is similar, but
involved for two reasons. First, the program may be degenerate, with an edge s
instead of a vertex solution. Using a second smallest objective function, we ca
define uniquely the apexv of the regionR. A second difficulty arises from the fact th
we may have any number of pseudolines throughv, hence the vertexv is not sufficient
to determineR. An edge of the border ofR containingv has to be determined, b
optimization with respect to the linear ordering. We mention that for nonuniform orie
matroids of rank� 4, not considered here, a further difficulty occurs whenv is a nonsimple
vertex ofR.

In view of the relationo1,0 = 2b1,0, to prove bijectivity in the unitary case it suffices
prove either injectivity or surjectivity. In Sections 3 and 4, we prove both, thus provid
natural bijective proof of this formula. The case of general(i, j) activities is derived from
the(1,0) case by means of decompositions of activities for both matroid bases and or
matroids. Decompositions of activities are outlined in the case of graph orientatio
[14], appear partly for matroid bases in [5], and are described in [8] (see also [6]) i
generality. In the special cases of the present paper, general definitions can be avo
means of direct constructions.

Finally, we mention that in the two particular cases of the paper the canonical
correspondence for(1,0) activities is uniquely determined by the bijectivity property a
an incidence preserving property (Propositions 3.10 and 4.7). This property does n
in general.



E. Gioan, M. Las Vergnas / Advances in Applied Mathematics 32 (2004) 212–238 215

l

l

l way,
raphs

g
osed

e

id

signed

ry

sitive
ally

]: the

5 by
2. Notation and terminology

LetM be a matroid on a set of elementsE, andB ⊆ E be a basis ofM. Fore ∈E \B,
we denote byC(B; e) the fundamental circuitof e with respect toB, i.e., the unique
circuit contained inB ∪ {e}. Dually, for e ∈ B, we denote byC∗(B; e) the fundamenta
cocircuit of e with respect toB, i.e., the unique cocircuit contained in(E \ B) ∪ {e}. For
e ∈ E \ B ande′ ∈ B, we have clearlye′ ∈ C(B; e) if and only if e ∈ C∗(B; e′), and then
C(B; e)∩C∗(B; e′)= {e, e′}.

We say that a matroidM is orderedif its set of elementsE is linearly ordered. The
notion ofactivitiesof a basisB in an ordered matroidM is due to W.T. Tutte [16] in the
case of graphs, and to H.H. Crapo [4] in the case of matroids. Theinternal activity ι(B)
is the number of elementse ∈ B smallest in their fundamental cocircuitC∗(B; e), and the
external activityε(B) is the number of elementse ∈ E \ B smallest in their fundamenta
circuit C(B; e). We say that a basisB with ι(B) = i andε(B) = j is an(i, j)-basis. We
denote bybi,j (M) the number of(i, j)-bases ofM.

Spanning tree activities have been introduced by Tutte to generalize, in a self-dua
classical properties of the chromatic polynomial of a graph [16]. The theorem for g
extends to matroids [4], we have

t (M;x, y)=
∑
i,j

bi,j x
iyj .

This expression readily implies that the coefficientsbi,j are independent from the orderin
of E. In recent textbooks, the Tutte polynomial of a matroid is defined by the cl
formula

t (M;x, y)=
∑
A⊆E

(x − 1)r(M)−rM(A)(y − 1)|A|−rM(A)

algebraically equivalent to therank generating functionof the matroid, and the abov
formula is proved by deletion/contraction of the greatest element (see [3]).

For usual definitions on oriented matroids, the reader is referred to [1]. If the matroM

is oriented fore ∈ E \ B, we denote byC(B; e) the unique signed circuitC contained in
B ∪ {e} such thate ∈ C+, and dually fore ∈ B, we denote byC∗(B; e) the unique signed
cocircuitD contained in(E \ B) ∪ {e} such thate ∈ D+. We will sometimes, when it is
not ambiguous, make the abuse of notation consiting of using the same letter for a
circuit or cocircuit and its (unsigned) support.

An oriented matroid isacyclic if it contains no positive circuit, or equivalently, if eve
element is contained in a positive cocircuit. Dually, an oriented matroid istotally cyclic if
it contains no positive cocircuit, or equivalently, if every element is contained in a po
circuit. An oriented matroid is acyclic if and only if the dual oriented matroid is tot
cyclic.

A basic result in the domain of the present paper, is a theorem of R. Stanley [15
number of acyclic orientations of a graphG is equal tot (C(G);2,0), whereC(G) is the
cycle matroid ofG [15]. This theorem has been generalized independently in 197
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T. Zaslavsky to real spaces in terms of arrangements of hyperplanes [17] (see also [
by M. Las Vergnas to oriented matroids [10].

The paper [13] introduces a generalization of these results in terms of anorientation
generating function. The (primal) orientation activityof an ordered oriented matroidM, or
O-activity, denoted byo(M), is the number of elements smallest in some positive circ
The dual orientation activityof M, or O∗-activity, denoted byo∗(M), is the number o
elements smallest in some positive cocircuit. We denote byoi,j (M) the number of subset
A ⊆ E such thato∗(−AM) = i ando(−AM)= j , where−AM denotes thereorientation
of M obtained by reversing signs onA (this notation differs slightly from the notatio
−AM used in [1]). If no confusion results, for brievity, we sometimes say that the sA

itself is a reorientation (we point out that different reorientationsA may produce the
same reoriented matroid−AM), and that a reorientationA such thato∗(−AM) = i and
o(−AM) = j is a (i, j)-reorientation. The definitions ofO- andO∗-activities have been
introduced in [13] in relation with the formula

t (M;x, y)=
∑
i,j

oi,j2−i−j xiyj .

This formula implies thatoi,j does not depend on the ordering, and thatoi,j = 2i+j bi,j .
The proof in [13] is by deletion/contraction of the greatest element. Note that

∑
i oi,0 is

the number of acyclic reorientations ofM, hence the above formula generalizes result
[2,10,15,17].

The proofs of Theorems 3.4 and 4.2 below use the equalityo1,0 = 2b1,0, which is a
particular case of the above result for the orientation generating function. This s
case is originally due to C. Greene and T. Zaslavsky [9] for acyclic orientations of g
with adjacent unique source and sink (see [7]), or bounded regions in real spaces,
generalized in [11] to oriented matroids.

The paper uses extensively the topological representation of oriented matroids.
knowledge of oriented matroid programming is also necessary. We refer the rea
[1, Chapters 5 and 10] for the needed prerequisites.

3. Uniform oriented matroids

We begin this section by stating the founding property of the general canonical
correspondence. It simplifies in the cases studied in this paper.

Proposition 3.0. Let M be an oriented matroid on a linearly ordered setE, andB be a
(1,0)-active basis ofM. SetB = {b1 < b2 < · · ·< br } andE \B = {c1 < c2 < · · ·< cn−r }.

Then there exist a unique pair of opposite reorientationsA andE \A such that, setting
M ′ = −AM = −E\AM,

(i) the covectorsC∗
M ′(B;b1), C∗

M ′(B;b1) ◦ C∗
M ′(B;b2), . . . ,C∗

M ′ (B;b1) ◦ C∗
M ′(B;b2) ◦

· · · ◦C∗ ′(B;br) are positive, and

M



E. Gioan, M. Las Vergnas / Advances in Applied Mathematics 32 (2004) 212–238 217

less
ion 3.0
ing
roids,
from
nted

tivity
these
oceed

e

s,
its

cts,
ory. In
eneral

t

(ii) the vectorsCM ′(B; c1), CM ′(B; c1) ◦CM ′(B; c2), . . . ,CM ′(B; c1) ◦CM ′(B; c2) ◦ · · · ◦
CM ′(B; cn−r ) have the smallest elementb1 of E as unique negative element.

FurthermoreA is a (1,0)-reorientation ofM.

The canonical active basis-reorientation correspondence is defined on(1,0)-bases of
a general ordered oriented matroidM by associating with a(1,0)-basis ofM the two
opposite(1,0)-reorientations given by Proposition 3.0. The proof of Proposition 3.0 is
than one page long. Nevertheless, we omit it in the present paper, since Proposit
is quoted here only as a motivation (it will appear in [8], see also [6]). Apply
Proposition 3.0 to the particular cases of uniform and acyclic rank-3 oriented mat
we will derive simplified definitions for the canonical active correspondence, first
a combinatorial point of view, then in terms of the topological representation of orie
matroids and of oriented matroid programming, yielding short direct proofs of bijec
(the general proof of bijectivity is about 4 page long). Of course, we could have given
definitions from scratch. We find it interesting to show how they are related, and pr
from the same general setting.

Two dual algorithms to construct a(1,0)-reorientationA associated with a(1,0)-basis
B by the canonical active correspondence are easy corollaries of Proposition 3.0.

Algorithm 3.0.1. (1) reorient inC∗
M(B;b1) to get all signs positive;

(2) for i = 2, . . . , r reorient inC∗
M(B;bi) \ ⋃

j<i C
∗
M(B;bj ) to get all signs opposite

to the reoriented sign of the minimal element ofC∗
M(B;bi) (this minimal element is

necessarily in
⋃

j<i C
∗
M(B;bj )).

Algorithm 3.0.2. (1) reorient inCM(B; c1) to gete1 negative and all other signs positiv;
(2) for i = 2, . . . , r reorient inCM(B; ci) \ ⋃

j<i CM(B; cj ) to get all signs opposite
to the reoriented sign of the minimal element ofCM(B; ci) (this minimal element is
necessarily in

⋃
j<i CM(B; cj )).

A rank-r matroid onn elements isuniform if its bases are allr-subsets of element
or, equivalently, if its circuits are all(r + 1)-subsets of elements, or, equivalently,
cocircuits are all(n − r + 1)-subsets of elements. The abstract rank-r uniform matroid
on n elements is denoted byUr,n. Uniform nonoriented matroids are very simple obje
whereas uniform oriented matroids encompass a significant part of the general the
the present context, they provide a simple intuitive approach to the intricacies of the g
case, specially from the linear programming point of view.

Let M be a uniform matroid on a linearly ordered setE = {e1 < e2 < · · ·}, andB be a
(1,0)-active basis. As easily seen, we haveι(B)= 1 andε(B) = 0 if and only ife1 ∈ B and
e2 /∈ B. Then a(1,0)-basisB is determined by the fundamental cocircuitD = C∗(B; e1)

of e1: we haveB = (E \D) ∪ {e1}.
We apply Algorithm 3.0.1 toB. SinceM is uniform, as sets we haveC∗(B;bi) =

(E \ B) ∪ {bi} andC(B; cj ) = B ∪ {cj }. In the first step of Algorithm 1, we reorien
positivelyD = C∗(B;b1 = e1) by reversing signs onD−; note thate1 /∈D−. In stepi � 2,
we have reverse or not the sign ofbi if and only ifbi has the same sign that the reorientede2



218 E. Gioan, M. Las Vergnas / Advances in Applied Mathematics 32 (2004) 212–238

f

ciating

to

tive
f

on

in a
a for

lest

a

in C∗(B;bi). If e2 ∈D+ then the sign ofe2 is not changed, hence the sign ofbi is reversed
if and only if e2 is positive in the original cocircuitC∗

M(B;bi), hence by orthogonality i
and only ifbi is negative inCM(B; e2). The condition is reversed ife2 ∈ D−. Summing
up, we get

Definition 3.1. Let M be a uniform oriented matroid on a linearly ordered setE = {e1 <

e2 < · · ·}. We define the canonical active correspondence in the unitary case by asso
with a (1,0)-active basisB the two opposite reorientationsA andE \A defined by

A= (C− ∪D−) \ {e1}

whereD = C∗(B; e1) and C = C(B; e2) if e2 ∈ D+ respectivelyC = −C(B; e2) if
e2 ∈D−.

Note that in−AM the fundamental cocircuitD is positive and the fundamental (up
opposite) circuitC hasC− = {e2}. We now establish that the reorientation is(1,0)-active
and that the correspondence is bijective.

Theorem 3.2. Let M be a uniform ordered oriented matroid. The canonical ac
correspondence is a bijection from the set of(1,0)-active bases ofM to the set of pairs o
opposite(1,0)-reorientations ofM.

Remark 3.2.1. (i) We have −AM = −E\AM. Hence, the active basis-reorientati
correspondence defines a bijection from the set of(1,0)-bases ofM onto the set of
reorientationsM ′ of M with (1,0) orientation activities.

(ii) The oriented matroid−AM depends only on the reorientation class ofM. Applied
to a reorientationM ′ of M the definition of Theorem 3.2 produces a setA′ such that
−A′M ′ = −AM.

(iii) The linear ordering onE is effective only by its first two elementse1 < e2.
A permutation of{e3, e4, . . . , en} does not change the active correspondence on(1,0)-
bases.

As well known, in an oriented matroid an element is either in a positive circuit, or
positive cocircuit, but not in both. This property is sometimes called the Farkás Lemm
oriented matroids [1, Corollary 3.4.6].

Lemma 3.2.2. LetM be a uniform oriented matroid on a linearly ordered set with smal
elemente1. The following properties are equivalent:

(i) o∗(M)= 1;
(ii) M contains a positive cocircuit, and a circuitC withC− = {e1}.

Proof. We show that (i) implies (ii). Ifo∗(M) > 0 then by definitionM contains a positive
cocircuit. The conditiono∗(M)= 1 means that all positive cocircuits containe1. It follows
that M contains no cocircuitD with D− = {e1}, otherwise, by elimination, we get
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Table 1

e f b B1 \B2 B2 \B1 (B1 ∩ B2) \ e E \ (B1 ∪ B2) \ f
C1 − + + + 0 + 0
−C2 + − 0 0 − − 0
C ±/0 0 + +/0 −/0 ±/0 0
D 0 ±/0 + +/0 −/0 0 ±/0
−D1 − − 0 0 − 0 −
D2 + + + + 0 0 +

positive cocircuit not containinge1. Hence by the Farkás Lemma for oriented matro
applied to−e1M, there is a circuitC with C− = {e1}.

Conversely, supposeM contains a circuitC with C− = {e1}, and letD be a positive
cocircuit. We haveC ∩ D �= ∅ sinceM is uniform. If e1 /∈ D then all elements inC ∩ D

are positive inC and inD, contradicting the orthogonality condition.✷
Lemma 3.2.3. In a uniform oriented matroid, for any fixede, f ∈ E, there is at most on
positive cocircuitD containing two elementse, f such that the circuitC = (E \D)∪{e, f }
hasC− = {e}.

Proof. Suppose, by contradiction, there are two different basesB1,B2 containinge and not
containingf such that the circuitsC1 = B1 ∪{f } andC2 = B2 ∪{f } haveC−

1 = C−
2 = {e}

and the cocircuitsD1 = (E \B1)∪ {e} andD2 = (E \B2)∪ {e} are positive.
Let b ∈ B1 \ B2 = C1 \ C2 = D2 \ D1. Let C be a circuit obtained fromC1 and

−C2 by eliminatingf , such thatb ∈ C. We haveb ∈ C ⊆ (C1 ∪ C2) \ {f } = B1 ∪ B2,
C∩ (B1 \B2)⊆ C+ andC∩ (B2 \B1)⊆ C−. LetD be a cocircuit obtained from−D1 and
D2 by eliminatinge, such thatb ∈D. We haveb ∈D ⊆ (D1 ∪D2) \ {e} =E \ (B1 ∩B2),
D ∩ (B1 \B2)⊆ D+ andD ∩ (B2 \B1)⊆D− (see Table 1).

We haveb ∈ C ∩ D ⊆ (B1 \ B2) ∪ (B2 \ B1). The signs ofC andD coincide on their
nonempty intersection, contradicting the orthogonality property.✷
Proof of Theorem 3.2. If e2 ∈ D− then setC = −C(B; e2), if e2 ∈ D+ then setC =
C(B; e2). And setD = C∗(B; e1). Using orthogonality, sinceC ∩D = {e1, e2}, we have
e1 ∈C− ∩D+, and the signs ofe2 in C andD are equal.

By definition, we haveA= (C− ∪D−)\ {e1}. It follows that(−AC)
− = {e1} and−AD

is positive. Hence by Lemma 3.2.2, we haveo∗(−AM)= 1. In a uniform oriented matroid
a circuit and a cocircuit have always a nonempty intersection, then using orthogo
−AM has no positive circuit. Hence−AM is a(1,0)-reorientation ofM.

By Lemma 3.2.3, the mappingB �→ A = (C− ∪ D−) \ {e1} is injective on the set o
(1,0)-bases ofM. Hence this mapping is a bijection, since the number of(1,0)-bases
of M is equal to the number of subsetsA of E such thate1 /∈ A and−AM is a (1,0)-
reorientation ofM [11]. ✷

We now give a topological interpretation of Theorem 3.2. We recall that, by the Top
ical Representation Theorem (see [1, Chapter 5]), the elements{e1, e2, . . . , en} of a rank-r
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oriented matroidM can be represented by an arrangement of tame topological(r − 2)-
spheres, orpseudospheres, imbedded inS = Sr−1, with open halfspheres distinguished
e+
i ande−

i for i = 1,2, . . . , n, in such a way that the set of{0,+,−}-vectors defined by
the signs of the pseudospheres on the vertices of the arrangement is identical to th
cocircuits ofM (see Example 3.2.1 below).

We denote byS+ the closed halfsphere defined bye+
1 . We say thate1 is the infinity

pseudosphereor plane at infinityof S+, and we restrict the pseudospherese2, . . . , en to
their intersections withS+, calledpseudohyperplanes. The regionsof the arrangemen
are the connected components of the complement inS of the union of the pseudospher
{e1, e2, . . . , en}. A region isboundedif its closure does not meete1, or, equivalently, if
none of its vertices belongs toe1. Thesign-vectorof a region is the{+,−}-vector defined
by the signs of the pseudospheres on any point of this region. The negative compon
the sign-vectors define a bijection between the regions of the arrangement and the
A⊆ E such that−AM is an acyclic reorientation ofM. In this bijection, the subsetsA of
E such thate1 /∈A and−AM is a(1,0)-reorientation ofM, i.e., acyclic reorientations suc
that every positive cocircuit containse1, are in 1–1 correspondence with bounded regi
contained inS+. The number of bounded regions contained inS+ is b1,0 [9,11].

A (1,0)-basisB of M has the form{b1 = e1 < b2 < · · · < br}, with e2 < b2. The
pseudohyperplanesb2, . . . , br } meet in a vertexv of the arrangement. The sign-vector ov
is given by the fundamental cocircuitD = C∗(B; e1). Its± signs constitute the sign-vect
of the region containingv in the sub-arrangement constituted by the pseudohyperplan
containingv. SinceM is uniform, the sub-arrangement constituted byb1 = e1, b2, . . . , br
and e2 has a unique circuit{b1 = e1, e2, b2, . . . , br }, hence is homeomorphic to a re
arrangement. Thus, we may suppose thatbi, i = 2, . . . , r, is homeomorphic to th
coordinate hyperplanexi−1 = 0 of Rr−1, e2 to the hyperplanex1 + x2 + · · · + xr−1 = 1,
ande1 to the plane at infinity. Using this homeomorphism, clearly,b2, . . . , br divide S+
into 2r−1 hyperoctantswith apexv, and exactly one of these hyperoctants, called theactive
hyperoctant, contains the unique bounded region determined bye2 andb2, . . . , br .

The fundamental cocircuit ofbi ∈ B with respect toB correspond geometrically to th
vertex intersection ofB \ bi . SetC = ±C(B; e2) such that the sign ofe2 in C is the same
than its sign inD. Namely, we haveC = C(B; e2) if v is in e+

2 andC = −C(B; e2) if
v ∈ e−

2 . For bi ∈ B, using orthogonality, the sign ofbi in the fundamental circuit ofe2 is
the opposite of the sign ofe2 in the fundamental cocircuit ofbi . Hence the sign-vecto
of the active hyperoctant in the sub-arrangement constituted by the pseudohype
containingv, is given by the signs inC \ {e1, e2}. Note thate1 ∈ C− ∩D+. Summing up,
the sign-vector of the unique region incident tov and contained in the active hyperocta
is given by the signs inC \ {e1} andD.

By Theorem 3.2, the active basis-reorientation correspondence associates withB the
regionR defined by the reorientationA= (C− ∪D−) \ {e1}. Hence, we have proved

Proposition 3.3. The regionR of S+ associated with a(1,0)-basisB of a uniform ordered
oriented matroid by the active basis-reorientation correspondence is the unique r
contained in the active hyperoctant defined byB and incident to its apex.
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Fig. 1.

If the ± sides are defined by afundamental region, positive in all pseudohyperplane
thenA = (C− ∪ D−) \ {e1} is the set of pseudohyperplanes which have to be cross
reach the regionR from the fundamental region. More precisely,D− permits to reach a
regionR′ incident tov, andC− \ {e1} \ D− permits to go fromR′ to R. It follows from
properties of oriented matroids [1], that these crossings can be rearranged in a pa
the fundamental region toR′, then toR (see below Example 3.3.1).

Example 3.3.1. The pseudoline arrangement of Fig. 1 is Ringel arrangement, a s
arrangement of 9 pseudolines derived from a non-Pappus configuration. We reca
Ringel arrangement is anonstretchablearrangement (i.e., not combinatorially equivale
to an arrangement of lines) with the smallest possible number of pseudolines
corresponding oriented matroid is uniform of rank 3 on 9 elements.

Signs are defined by a fundamental region of the arrangement (colored in ligh
bottom of Fig. 1). We recall that the sign of an elementx in a cocircuitD =E \ {e, f } is +
if the fundamental region and the intersection of the pseudolinese andf are not separate
by the pseudolinex, and− if they are separated.

LetB = 169. The regionR image ofB by the active correspondence is colored in d
gray.

We read on Fig. 1 thatD = C∗(169;1)= 1234578.
Signs of the circuitC(169;2) are defined by orthogonality, from the cocircuits meet

it in 1 and another element. We have already 1234578 with intersection 12. We read o
Fig. 1 the cocircuits 1345678 for 16 and 1345789 for 19. ThereforeC(169;2)= 1269. It
follows thatC = −C(169;2)= 1269, since 2∈D−.

By Theorem 3.2 we haveA= (C− ∪D−) \ 1 = 234678.
As easily seen on Fig. 1, the path 238476 goes from the fundamental region toR′ = 149,

then toR = 169 (there are other possible paths). In accordance with Proposition
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the regionR is the unique region contained in the active quadrant determined b
pseudolines 6 and 9, colored in mid gray in Fig. 1, and incident to their intersection.

Remark 3.3.2. Another way to define geometrically the regionR associated with the
given basisB is as follows. In Theorem 3.2, the reorientationA definingR is chosen
so that in−AM the cocircuitC∗(B; e1) is positive, ande1 is the only negative elemen
in C = ±C(B; e2). By orthogonality,e2 and bi have opposite signs inC∗(B;bi) for
i = 2,3, . . . , r. Geometrically, this means, first, that the vertexv defined byC∗(B; e1)

is incident toR. Then, the pseudo-simplexP determined by the pseudohyperplanes inB

and contained in the positive side ofe2 is identical to the hyperoctant opposite to the ac
hyperoctant relatively tov. The regionR being the region incident tov and opposite toP
is the region incident tov contained in the active hyperoctant.

For an ordered uniform oriented matroidM on E = {e1 < e2 < · · ·}, the active basis
reorientation correspondence can be interpreted as a solution of an oriented m
program(M,e1, e2) (see [1, Chapter 10] for oriented matroid programming) on e
bounded region of the topological representation ofM.

Proposition 3.4. With above notation, the vertexv is the unique solution of the followin
oriented matroid program: maximize the objective function defined bye2 if R is on the
positive side ofe2, or minimize ifR is on the negative side ofe2, on the bounded regionR
with respect to the infinitye1.

The definition in Theorem 3.2 is in disguise the ‘simplex criterion’ of [1, Co
lary 10.2.8]. It follows that Proposition 3.4 is a reformulation of results of oriented ma
programming. For completeness, we give a direct proof in the present context.

The ‘main theorem of oriented matroid programming’ [1, Theorem 10.1.13] s
that the graph of the program on a bounded region has at least one sink, unique
nondegenerate case. We recall that given a plane at infinitye1 and an objective functione2
thegraph of the programon a bounded regionR is the partially directed graph defined b
the vertices and edges ofR such that an edge joining two adjacent vertices is directe
the increasing direction of the objective function [1, Definition 10.1.16].

We introduce a closely related graph, more convenient for our purpose.

Definition 3.5. Theactive cocircuit graphG of an ordered oriented matroidM is a directed
graph whose vertex-set is the set of (signed) cocircuits ofM. Two verticesD1 D2 are
adjacent inG if and only if E \D1 andE \D2 are comodular inM2 andD1 andD2 are
conformal signed sets.3

2 Two subsets of elementsX1 X2 arecomodular(short forconstitute a modular pair) in a matroidM if and
only if rM(X1) + rM(X2) = rM(X1 ∩ X2) + rM(X1 ∪ X2). The complementE \ D of a cocircuitD is an
hyperplane, i.e., a flat of rankr − 1, ofM , and conversely. Two different hyperplanesH1 andH2 are comodular
in M if and only if the rank ofH1 ∩H2 is r − 2, i.e., if and only ifH1 ∩H2 is a coline.

3 Two signed sets areconformalif and only if their signs coincide on their intersection.
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The simplest definition of edge directions inG is in terms of the topologica
representation ofM. Let D1 D2 be two cocircuits adjacent inG. SinceE \ D1 and
E \ D2 are comodular inM, thenL = E \ (D1 ∪ D2) is a coline ofM, i.e., a corank 2
flat. By properties of the pseudosphere arrangement representingM, the intersection o
the pseudospheres inL is a pseudocircleλ ≈ S1, such that the intersections ofλ with the
pseudospheres inE \ L = D1 ∪ D2 constitute an arrangement of 0-spheres, i.e., pair
points, representing the rank 2 oriented matroidM/L. Let {e < e′} be the lexicographically
minimal basis ofM/L. The two 0-spheres representinge and e′ in λ divide λ into 4
topological segments, each with one extremity belonging to the 0-spheree and the other
to the 0-spheree′. We direct these 4 segments frome′ towardse. The conformal cocircuits
D1 andD2 are combinatorially consecutive points ofλ, i.e., each belongs to a 0-sphe
and the interior of one of the two topological segments they define, sayδ, meets no othe
0-sphere of the arrangement. Therefore,δ is contained in exactly one of the four segme
defined bye ande′, sayσ . We direct the edgeD1 −D2 in the direction ofδ consistent with
the direction ofσ .

Example 3.3.1 (continued). Definition 3.5 is illustrated in rank 3 by Fig. 2. In this ran
3 example, since 3− 2 = 1, the pseudolines (and circlee1) are both the pseudospher
representing the elements of the matroid and the pseudocircles of Definition 3.5. The
of G are realized as topological segments of the pseudolines or pseudocircle.

For edgesD1 −D2 of G with D1 D2 not both ine1 or both ine2, we havee = e1 and
e′ = e2 in Definition 3.5. For edgesD1 −D2 supported bye1, we havee = e2 ande′ = e3.
For edgesD1 −D2 supported bye2, we havee = e1 ande′ = e3.

Fig. 2.
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From Definition 3.5, we easily get a combinatorial definition, to be used in the p
of Proposition 3.4, of directions of edges of bounded regions in the particular cas
uniform oriented matroid. In this case, we havee = e1 ande′ = e2.

Definition 3.5.2. Let D1 − D2 be an edge of the active cocircuit graph such thate1 ∈
D1 ∩D2. SinceM is uniform, we have|D1 \D2| = |D2 \D1| = 1, sayD1 \D2 = {x1} and
D2 \D1 = {x2}. Then,we direct the edge fromD1 toD2 if

– e2 /∈D1 ande2 ∈D2,
– or, e2 ∈D1 ∩D2, and we haveD(x1)=D1(x1),4 or, equivalently,D(x2)= −D2(x2),

whereD is the unique cocircuit obtained fromD1 D2 by eliminatinge1, such that
D(e2)=D1(e2)=D2(e2).

In terms of Definition 3.5, the cocircuitD is the extremity of the segmentσ which
belongs to the 0-spheree.

The active cocircuit graph coincide with the graph of a program on bounded re
located on the positive side ofe2, and has opposite edge directions on bounded reg
located on the negative side ofe2. In the active cocircuit graph, no distinction is ma
between a minimum (a source in the program graph) and a maximum (a sink in the pr
graph). This slight change has an important consequence in our context. In the gener
several simultaneous linear programs have to be handled, with a mixture of minimizin
maximizing [8] (see also [6]). For instance, in rank 3 (see Section 4), we have to co
two matroid linear programs in the degenerate cases (with respect toe2 andem). The main
point is that vertices produced by the active basis-reorientation correspondence are
associated with sinks of the active cocircuit graph, whereas this would not be the ca
program graphs, or their natural extensions to the whole set of cocircuits. We point o
the active cocircuit graph depends on the ordering, but is invariant under reorientati

Proof of Proposition 3.4. Let R be a bounded region. Since the active cocircuit grapG
is invariant under reorientation, without loss of generality we may suppose thatR is the
fundamental region of the arrangement. Letv0 be a vertex ofR, unique by Lemma 3.2.2
such that the corresponding cocircuitD0 is positive, and the circuitC0 = (E \D0)∪{e1, e2}
hasC−

0 = {e2}. With Theorem 3.2, we know that there exist such a vertex: it corresp
to the cocircuitD for the(1,0)-basis associated withR.

Suppose there is an edgeD0 → D2 in the graphG such thatD2 is a vertex ofR,
i.e., is a positive cocircuit. SetD0 \D2 = {x0} andD2 \D0 = {x2}. Let D be the unique
cocircuit contained inE \ D0 ∪ D2 such thate1 /∈ D ande2 ∈ D+. By Definition 3.5.2,
we havex2 ∈ D−. It follows that C0 andD have opposite signs on their intersecti
C0 ∩D = {e2, x2}, contradicting the orthogonality property. (See Table 2.)

Let D1 be a positive cocircuit different fromD0. We show that inG the vertexD1
has at least one outgoing edge. We havee1 ∈ D1 sinceR is bounded. Ife2 /∈ D1, then

4 Let X be a signed set, ande ∈ X. ThenX(e) denotes the sign ofe in X. We haveX(e) = 1 if and only if
e ∈X+ , X(e)= −1 if and only if e ∈X−.
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Table 2

e1 e2 x0 x2 D0 \ {e1, e2, x0} E \ (D0 ∪D2)

D0 + + + 0 + 0
D2 + + 0 + + 0
D 0 + + − ±/0 0
C0 + − 0 + 0 +

Table 3

e1 e2 x D1 \ {e1, e2} E \D1 \ {x}
C1 − + − 0 ±/0
D1 + + 0 + 0
D 0 + + ±/0 0
D2 + + + +/0 0

for any positive cocircuitD2 with e2 ∈ D2 comodular withD1, we haveD1 → D2 by
the first case of Definition 3.5.2. Supposee2 ∈ D1. Let C1 be the circuit supported b
(E \ D1) ∪ {e1, e2} such thate2 ∈ C+

1 . We haveC1 ∪ D1 = {e1, e2}, hencee1 ∈ C−
1 . By

Lemma 3.3.2, there isx ∈ C1 \ {e1, e2} such thatx ∈C−
1 . LetD be the cocircuit supporte

byD1 \ {e1}∪{x} such thatx ∈D+. Sincex ∈C1 ∩D ⊆ {e2, x}, by orthogonality we have
C1 ∩D = {e2, x}, hencee2 ∈ D+. The compositionD1 ◦D is a positive covector. Hence
by conformal composition,5 there is a positive cocircuitD2 such thatx ∈ D2. We have
e1 ∈ D2 sinceR is bounded. Since{e1, x} ⊆ C−

1 ∩ D+
2 } andC1 ∩ D2} ⊆ {e1, e2, x}, by

orthogonality, we havee2 ∈ D2 = D+
2 . Therefore, by the second case of Definition 3.5

weD1 →D2. (See Table 3.) ✷
We point out that Theorem 3.3 and Proposition 3.4 provide as corollary an alte

proof of the main theorem of oriented matroid programming in the nondegenerate
Conversely Proposition 3.4 and the main theorem of oriented matroid programming
that the active correspondence is surjective.

We mention that the duality between circuits and cocircuits in Theorem 3.2 is rela
duality in linear and oriented matroid programming (see [1, Proposition 10.1.4]).

We now extend the active correspondence from the(1,0) case to the general case. T
main tool is a partition of set of elements of the oriented matroid, calledactive partition,
either with respect to a basis in an ordered matroid or with respect to the orienta
an ordered oriented matroid. Active partitions permit to reduce general(i, j) activities
to (1,0) (or, dually, (0,1)) activities, by means of associated minors, and to ex
consistently the canonical active correspondence from(1,0)-active bases to all bases [
(see also [6]). In the uniform case, active partitions and the corresponding constructi
be described directly very easily.

5 ThecompositionX ◦ Y of two signed setsX,Y is defined by(X ◦ Y)+ =X+ ∪ (Y+ \X) and(X ◦ Y)− =
X− ∪ (Y− \ X). In an oriented matroid, any composition of circuits respectively cocircuits, is a confo
composition of circuits respectively cocircuits [1, Proposition 3.7.2].
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Proposition 3.6. LetE = {e1 < e2 < · · ·< en} be a linearly ordered set, andM ≈Ur,n be
a rank-r uniform matroid onE.

(i) A basisB is either internal—ife1 ∈ B, or external—ife1 /∈B.
(ii) If e1 ∈ B, andr < n, let i be the smallest integer such thatei+1 /∈ B, thenι(B) = i,

and the internally active elements ofB are e1, e2, . . . , ei , there is no externally activ
elements. The basisB \ {e1, . . . , ei−1} ofM/{e1, . . . , ei−1} is (1,0)-active.

The proof is easy and left to the reader. In the case of (ii), we callactive partitionwith
respect toB the partitionE = {e1} + {e2} + · · · + {ei−1} + (E \ {e1, e2, . . . , ei−1}).

It follows that for 0< r < n, we have

bi,0(Ur,n)=
i=r∑
i=1

(
n− i − 1

r − i

)
, b0,j (Ur,n)=

j=n−r∑
j=1

(
n− j − 1

n− r − j

)
,

andbi,j (Ur,n)= 0 for i, j > 0.
Hence, for 0< r < n,

t (Ur,n;x, y)=
i=r∑
i=1

(
n− i − 1

r − i

)
xi +

j=n−r∑
j=1

(
n− j − 1

n− r − j

)
yj .

Special cases:t (Un,n;x, y)= xn andt (U0,n;x, y)= yn.

Proposition 3.7. LetM be an ordered uniform oriented matroid on a linearly ordered
E = {e1 < e2 < · · ·< en}.

(i) M is either acyclic or totally cyclic.
(ii) SupposeM acyclic with o∗(M) = i. Then theO∗-active elements ofM are

e1, e2, . . . , ei , andM/{e1, e2, . . . , ei} is (1,0)-active.

The orientation active partition ofM isE = {e1}+ {e2}+ · · ·+ {ei−1}+ {ei, ei+1, . . . , en}.

Proof. (i) This elementary property is well known. We give a proof for completen
SupposeM contains a positive cocircuitD, and let V be any positive covecto
containingD. SupposeE \ V �= ∅, and lete ∈ E \ V . The matroidM being uniform,
there is a cocircuitD′ such thatD′ \V = {e} with e ∈D′+. ThenV ′ = V ◦D′ is a positive
vector with|V ′| = |V | + 1. It follows inductively thatE is a positive covector ofM, i.e.,
M is acyclic.

(ii) It suffices to show that ifej isO∗-active inM thenej−1 is alsoO∗-active. Suppose
there is a positive cocircuitD with smallest elementej . The matroidM being uniform,
D′ = D \ {ej } ∪ {ej−1} is also a cocircuit. Replacing if necessaryD′ by −D′, we may
supposee ∈D′+. ThenD ◦D′ is a positive vector ofM, hence by conformal compositio
a union of positive cocircuits ofM. It follows thatej−1 ∈D ◦D′ is in a positive cocircuit
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contained inD∪D′, hence necessarily the smallest element of this cocircuit, and ther
is O∗-active. ✷

In view of Theorem 3.2, Propositions 3.6 and 3.7, the following theorem follows.

Theorem 3.8. Let M be a uniform oriented matroid on linearly ordered setE = {e1 <

e2 < · · ·< en}, andB be a basis ofM.
If ι(B)= i � 1 (henceε(B)= 0), then the canonical active correspondence associ

with B the 2i (i,0)-active reorientationsA ⊆ E of the formA = X ∪ A′ and A =
X ∪ (E \ A′), such thatX ⊆ {e1, e2, . . . , ei−1} andA′ is associated with the(1,0)-basis
B \ {e1, e2, . . . , ei−1} in M/{e1, e2, . . . , ei−1} by the canonical active correspondence.

If ε(B)= i � 1 (henceι(B)= 0), then the canonical active correspondence associ
with B the 2i (0, i)-active reorientationsA ⊆ E associated with the(i,0)-active basis
E \B in M∗.

Then, each of the2n reorientations ofM is associated with exactly one basis ofM.

Remarks 3.8.1. (i) We point out that the canonical active correspondence not
preserves activities, which was our initial requirement, but also preserves active ele
and in fact preserves active partitions.

(ii) In an oriented matroidM with o∗(M)= i ando(M)= j , we define anactivity class
of reorientationsas the set of 2i+j reorientations obtained by reversing signs on arbit
unions of parts of the orientation active partition ofM. The activity classes of reorientatio
obviously partition the set of 2n reorientations ofM. In the previous definition, as i
the general case, the reorientations associated with a basis constitute an activity
reorientations. The canonical active correspondence can be seen as an activity pre
bijection between bases and activity classes of reorientations.

(iii) As in Theorem 3.2, the ordering is effective only for the first elements. Chan
the ordering of elementsei with i > Max(r, n− r) does not modify the correspondence

(iv) Propositions 3.4 and 3.7 provide the reverse correspondence.

Example 3.3.1 (continued). In Fig. 2, the basis associated with a region is indica
within the region. A dashed angle indicates the vertex, solution of the linear pro
on a bounded region. In a bounded region associated with a basis{e1, b2, b3}, the two
pseudolines supporting the angle of the region areb2 andb3.

We conclude this section by two properties of the active basis-reorientation corre
dence. The first one provides an inductive construction of this correspondence. The
one exhibits natural properties determining uniquely the active basis-reorientation
spondence for realizable uniform oriented matroids.

We have shown that constructing the active basis-reorientation corresponde
bounded regions, i.e.,(1,0) acyclic oriented matroidM, is equivalent to constructing th
sink of the active cocircuit graph on each bounded region, or, equivalently, the fundam
cocircuit of e1 with respect to the basis associated withM. For short, we denote thi
fundamental cocircuit by Opt(M).
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Proposition 3.9. Let M be a (1,0) orientation active ordered uniform oriented matro
on E = {e1 < e2 < · · ·}. Let R be a bounded region representingM in a topological
representation by a pseudosphere arrangement, lete ∈ E \ {e1, e2}, and−eR denote the
region obtained by crossing the pseudospheree fromR if −eM is acyclic.

The applicationOpt is uniquely determined by the following induction:

(i) If |E| = 2, thenR is reduced to the optimal vertex, thenOpt(M)= {e1, e2}.
(ii) If −eM is not acyclic, thenOpt(M) := Opt(M \ e)∪ {e}.
(iii) If −eR is an unbounded region, thenOpt(M) := Opt(M/e).
(iv) If −eR is a bounded region, there are two cases:

– the optimal vertex of the region containingR in the arrangement obtained b
deletinge is incident toR, thenOpt(M) := Opt(M \ e)∪ {e};

– the optimal vertex ofR is on the pseudospheree, thenOpt(M) := Opt(M/e).

Proof. The proof is by induction on|E|.
(i) The proposition is obvious when|E| = 2. Suppose|E| � 3.
Since the fundamental cocircuits ofB \{e} in M/e if e ∈B, respectively circuits ofM \e

if e /∈ B, are the fundamental cocircuits, respectively circuits, ofB in M with e removed,
it follows immediately from the definition that ife ∈ Opt(M) then Opt(M) = Opt(M/e),
and if e /∈ Opt(M) then Opt(M)= Opt(M \ e)∪ {e}.

(ii) If −eM is not acyclic thene belongs to every positive cocircuit ofM.
By the definition of the active cocircuit graph, ifD andD′ are comodular positive

cocircuits ofM ande is both inD andD′ then the edgeD −D′ is directed fromD to D′
if and only if it is directed fromD \ {e} to D′ \ {e} in M \ e. So the active cocircuit grap
M restricted to positive cocircuits ofM is the same as inM \ e.

Then by Proposition 3.4 and Definition 3.5 Opt(M)= Opt(M \ e)∪ {e}.
(iv) Since there is a unique optimal vertex Opt(M) for any (1,0)-uniform oriented

matroid, it follows from our preliminary observation and the induction hypothesis,
we have{Opt(M),Opt(−eM)} = {Opt(M/e),Opt(M \ e)∪ {e}}.

Hence, if Opt(M \ e)∪ {e} is a positive cocircuit ofM and we have Opt(M), otherwise
Opt(−eM) is a positive cocircuit and we have Opt(M)= Opt(M/e).

(iii) A bounded region inM \ e either is a bounded region inM case (ii), or contains
bounded region inM and its opposite region with respect toe case (iv).

Hence by the induction hypothesis theb1,0(M \ e) cocircuits ofM containinge1, e2,
ande have been associated with regions in cases (ii) and (iv). So the remaining coci
which are optimal for a regionR such that−eR is unbounded, must containe, that is must
satisfy Opt(M)= Opt(M/e). ✷

The algorithm of Proposition 3.9 is a set-theoretical extension of the nume
deletion/contraction relationt (M;1,0)= t (M \ e;1,0)+ t (M/e;1,0). Its proof is based
on well-known geometrical observations from linear programming: the suppressi
a variablee corresponds to the contraction of an elemente, and the suppression of
constrainte corresponds to the deletion of an elemente. Here this linear programmin
technique is applied simultaneously to all bounded regions.
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This deletion/contraction procedure can be generalized to any oriented matroid [8
also [6]). It provides an alternate construction of the canonical active basis-reorien
correspondence, based on comparisons of activities and adjacency properties in p
optimization properties and active partitions.

We say that a mapping from the vertices, or, equivalently, signed cocircuits,
oriented matroid to the regions of its topological pseudosphere representation isincidence
preservingif a vertex is always incident to its image region. LetV be the set of vertice
of an ordered oriented matroidM not contained in the pseudospherese1 or e2. If M is
uniform, the active basis-reorientation correspondence induces an incidence pre
bijection from the setV onto the set of bounded regions: a cocircuitD such thate1, e2 ∈D

with e1 ∈ D+ is mapped to the bounded region ine+
1 associated with the(1,0)-basis

B = D ∪ {e1}.

Proposition 3.10. LetM be an ordered uniform oriented matroid onE = {e1 < e2 < · · ·}.
If the active cocircuit graph contains no directed cycle in the setV of cocircuits containing
bothe1 ande2, then there exists a unique incidence preserving bijection fromV onto the
set of bounded regions. Otherwise, there are at least two such bijections.

Proof. Letf be an incidence preserving bijection fromV onto the set of bounded region
Suppose the active cocircuit graph is acyclic onV . Then, it induces an ordering onV .

The bijectionf induces a mappingg from V into itself: we mapv ∈ V to the unique sink
g(v) of the bounded regionf (v). The matroidM being uniform, a vertex is a sink in a
most one bounded region. Henceg is a bijection fromV onto itself. Sincef preserves
incidences, by properties of oriented matroid programming [1, Chapter 10], the bije
g is augmenting: we havev � g(v) for all v ∈ V . Plainly, there is unique augmentin
bijection in a finite ordered set, namely the identity. It follows thatg is the identity, hence
f is unique.

Suppose now that there is a directed cyclev0 → v1 → ·· · → v- = v0 of the active
cocircuit graph withv0, v1, . . . , v- ∈ V . LetRi be the unique bounded region with (uniqu
sink vi for i = 1,2, . . . , -. Then, sinceM is uniform, the vertexvi−1 is also incident toRi

for i = 1,2, . . . , -. Hence the mappingf ′ defined byf for v ∈ V \ {v0, v1, . . . , v-} and
f ′(vi−1) = Ri for i = 1,2, . . . , - is a second incidence preserving bijection fromV onto
the set of bounded regions.✷

The active cocircuit graph is in particular acyclic when the uniform oriented ma
is realizable, i.e., arises from a configuration of points in real space. In gen
uniform oriented matroids the active cocircuit graph may contain directed cycle
fact, one important difficulty in oriented matroid programming, as compared to
linear programming, is that the graph of a program may contain directed cycles
smallest example is the oriented matroidEFM(8), uniform of rank 4 on 8 elements [1
Example 10.4.1]. An oriented matroid program(M,e1, e2) on an acyclic oriented matroi
M with infinity planee1 and objective functione2 is saidEuclideanif the graph of the
program contains no directed cycle [1, Theorem 10.5.5], andnon-Euclideanotherwise.
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4. Acyclic oriented matroids of rank 3

By the Topological Representation Theorem for oriented matroids, the acyclic
entations of a rank-3 oriented matroid are represented by the regions of an arran
of pseudolines in the plane. Our purpose in this section is to describe geometrica
canonical active basis-reorientation correspondence for acyclic ordered oriented m
of rank 3 in terms of pseudoline arrangements. For(1,0)-bases we derive from the comb
natorial constructions given by Proposition 3.0 and its corollaries a geometric constr
of the corresponding region. Then we give a simple direct proof of the bijectivity prop
For general internal bases, the correspondence is obtained from certain minors. Up
allel elements, these matroids are uniform of rank� 2, hence it suffices to apply results
Section 3 in very simple cases.

The constructions of this section constitute a first approach of the degenerate
and of the flag programming introduced in the general case [8] (see also [6]). In
of optimization, in the rank-3 acyclic case, the basis associated with a bounded re
optimal for an extended linear program with respect to the total order. A second obj
function is introduced to define the optimal vertex when the first one insufficient in ce
degenerate cases. The optimal basis{e1 < ep < eq} a basis defines two nested facesep ∩eq
andeq which have to be optimized. Intuitively, the canonical active correspondence c
thought of as aphenomenon of attractionwith respect to the total order related to activit
(see Fig. 7). We point out, however, that certain intricacies of the general case do no
in rank 3. In an arrangement of pseudolines a region is a polygon, hence, as in the u
case, all its vertices are simple, i.e., incident to a number of facets equal to the dime

Example 4.1.1. Let D13 be the configuration of 13 points in the projective pla
shown in Fig. 3. The configurationD13 is obtained by adding 3 pointsBCD to a

Fig. 3.
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Desargue configuration on 123456789A. Its automorphism group is of order 24, acti
symmetrically on 1457, with 3 orbits, namely 1457 23689A BCD.

The pseudoline arrangementD13 contains all cases of Definition 4.1 below.

The Tutte polynomial ofD13 is

t (D13;x, y)= y10 + 3y9 + 6y8 + 10y7 + 15y6 + 21y5 + 28y4 + x3 + 9xy2 + 36y3

+ 10x2 + 22xy + 36y2 + 24x + 24y.

The matroidD13 has t (D13;1,1) = 246 bases, and we haveb1,0 = 24 b2,0 = 10
b3,0 = 1. The pseudoline arrangement of Fig. 3 has 24+ 2.10+ 4.1 = 48 regions, with
24 bounded regions.

Definition 4.1. LetM be an ordered oriented matroid on a setE = {e1 < e2 < · · ·}. Without
loss of generality, we may suppose thatM has no 1- or 2-circuits (since a matroid with
loop has no(1,0)-basis, and two parallel elements appear together and have the sam
in all cocircuits of an acyclic matroid). LetB = {e1 < ep < eq} be a(1,0)-base ofM.

We haveep > e2, andep is the smallest pseudoline ofM containing the intersectio
v of the pseudolinesep andeq (otherwise this smallest elemente would be smallest in
the circuit{e, ep, eq}, hence externally active with respect toB). In particular,e2 does not
containv.

As in Section 3 we obtain the definition of the desired correspondence by app
Algorithm 3.0.1. There are four cases. We will give details for the first one, and leav
other three to the reader. In each case we define anactive quadrantQ, intersection of 2
half-planes defined byep, eq . Thenthe regionR associated withB by the active basis
reorientation correspondence is the region of the arrangement contained inQ, incident to
the vertexv = ep ∩ eq , and having one of its two edges incident tov supported byeq .

For short, we say thatek, e- areparallel if {e1, ek, e-} is a circuit ofM. We denote
by em the smallest elementem > e2 which is not parallel toe2. Then,{e1, e2, em} is the
lexicographically smallest basis.

(1) Bothep andeq are not parallel toe2 (Fig. 4, bases 147, 148, 149, 14A, 14C, 157, 1
159, 168, 16B of Fig. 6).

By the hypothesisep eq not parallel toe2, we havee2 ∈ D2 = C∗(B; ep) and e2 ∈
D3 = C∗(B; eq). At the first step of the algorithm, we reorientD1 = C∗(B; e1) positively.
The regionR is one of the regions incident to the vertexv = v1 = ep ∩ eq corresponding
to D1. Second step: we reorient onD2 \ D1 so that after reorientationD2 = C∗(B; ep)
is positive onD2 \D1 and hase2 negative. The vertexv2 ∈ e1 ∩ eq corresponding toD2
is on the side ofe2 opposite to the side ofR, therefore the edgew of the arrangemen
corresponding to the positive covectorD1 ◦D2, which is the edge ofeq incident tov = v1
directed towardv2, is the edge ofeq incident tov directed towarde2 ∩ eq . The regionR is
one of the 2 regions incident to the edgew. Third step: we reorient onD3 \ (D1 ∪D2) so
that after reorientationD3 = C∗(B; eq) is positive onD3 \ (D1 ∪D2) and hase2 negative.
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The vertexv3 ∈ e1 ∩ ep corresponding toD3 is on the side ofe2 opposite to the side ofR.
The regionR corresponding to the positive covectorD1 ◦ D2 ◦D3, contained in the sid
of eq containingv3, is now completely determined.

The active quadrantQ is the intersection of the closed halfplane defined byep and
containing the intersection ofe2 and eq , and the closed halfplane defined byeq and
containing the intersection ofe2 and ep . The intersection ofQ with e2 is a bounded
(pseudo)segment. Example—Fig. 4(1).

Let the fundamental regionR0 be the triangle with sides 1 2 4, and considerB =
157. We apply Algorithm 3.0.1. We haveD1 = 123468ABC, D2 = 2345689CD, and
D3 = 234789ABD. First reorientation:D−

1 = 2368B. We getD2 = 2345689CD. Second
reorientation:D+

2 \ D1 = 59. We getD3 = 234789ABD. Third reorientation:D−
3 \

(D1 ∪ D2) is empty. The reorientation associated withB is 235689B. It can easily b
checked on Fig. 4(1) that the path 236B859 goes from the fundamental region to the
region associated withB = 157 by the above definition.

There is a degeneracy if at least one ofep or eq is parallel toe2—then, exactly one
since{e2, ep, eq} is a basis. In this case, the definition ofQ uses the pseudolineem. There
may be two subcases, depending on whetherv is contained inem or not.

(2a) ep parallel to e2, v not contained inem (Fig. 4, bases 136, 137, 138, 139, 13A, 1
of Fig. 6).

Theneq is not parallel toe2, and we haveeq �= em sincev /∈ em.
The active quadrantQ is the intersection of the closed halfplane defined byep

containing the intersection ofe2 andeq , and the closed halfplane defined byeq containing
the intersection ofep andem.

(2b) eq parallel to e2, v not contained inem (Fig. 5, bases 15D, 16D of Fig. 6).
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Thenep is not parallel toe2, and we haveep �= em sincev /∈ em.
The active quadrantQ is the intersection of the closed halfplane defined byeq

containing the intersection ofe2 andep, and the closed halfplane defined byep containing
the intersection ofeq andem.

(3) ep or eq parallel to e2, v contained inem (Fig. 5, bases 135, 13B of Fig. 6).

If v ∈ em andeq parallel toe2, thenep is nonparallel toe2, hencem = p sincep is
the smallest pseudoline containingv, but thenep would be internally active. Henceep is
parallel toe2 andeq is not parallel toe2, implyingeq > em otherwiseeq would be internally
active.

The active quadrantQ is the intersection of the closed halfplane defined byep
containing the intersection ofe2 andeq , and the closed halfplane defined byeq containing
the intersection ofe2 andem.

We point out that in Definition 4.1 two oriented matroid programs are used
Section 3). In both the line at infinity ise1. The first one has objective functione2. When
the set of solutions is 1-dimensional—the so-called degenerate case—a second p
with objective functionem is used to obtain a unique vertex.

Theorem 4.2. The active basis-reorientation correspondence maps bijectively the s
(1,0)-bases onto the set of bounded regions of the pseudoline arrangement.

Proof. We prove that the mapping is injective. Suppose there are two basesB = {e1 <

ep < eq} andB ′ = {e1 < ep′ < eq ′ } mapped to a same regionR by the active basis
reorientation correspondence given by Definition 4.1.

In the case of a pseudoline arrangement, as already observed in Section 3, the c
graph can be identified with the graph defined by the pseudolines. To obtain the
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cocircuit graph, we direct the edges by means of Definition 3.6. Figure 6 shows the
for D13 with all edge directions. To prove Theorem 4.2, it suffices to direct the finite ed
i.e., with no vertex one1: from e2 towardse1 for edges supported by pseudolines
parallel toe2, from em towardse1 for edges supported by pseudolines parallel toe2.

In a bounded regionR associated with a(1,0)-basis by the correspondence
Definition 4.1, the two edges incident tov are directed towardsv. It follows easily from
topological properties of pseudolines (the Jordan curve theorem) that all verticesR

different from v have outgoing edges. Hence, a regionR, image of at least one bas
determines the vertexv. It follows that ep respectivelye′

p is the smallest pseudolin
containingv (otherwise this smallest pseudoline would be externally active with res
toB respectivelyB ′). In particular,ep = ep′ .

Supposeeq �= eq ′ . Then the 2 edges ofR incident tov are supported byeq andeq ′ . If
botheq andeq ′ are not parallel toe2 thenB andB ′ are both in one of the cases (1), (2
or (3) of Definition 4.1. In case (1) cannot be of the same side thane2 ∩ ep for both eq
andeq ′ . In case (2a) cannot be of the same side thanem ∩ ep for botheq andeq ′ . In case
(3) cannot be of the same side thanem ∩ e2 for botheq andeq ′ . If one ofeq , e′

q is parallel
to e2, sayeq , thenB is in case (2b) andB ′ in case (1), and we have also an impossibilit

As in the proof of Theorem 3.3, injectivity implies bijectivity sinceo1,0 = 2b1,0 [11]. ✷
Figure 6 illustrates the proof of Theorem 4.2. It shows edge directions in the a

cocircuit graph. The shade of gray indicates the relevant case of Definition 4.1. The
given by the active correspondence is written within each bounded region.

We complete Theorem 4.2 by proving directly the surjectivity of the correspond
We need this proof to reverse locally the correspondence, i.e., to be able to wr
basis associated with a bounded region of a pseudoline arrangement without com
the whole correspondence.
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Lemma 4.2.1. Every restriction of the active cocircuit graph to a region of the pseudo
arrangement has a unique sink.

Proof. As already observed in Section 3, the bijectivity of the active corresponden
bounded regions implies the ‘main theorem of oriented matroid programming,’ i.e
existence of a sink in all bounded regions in the nondegenerate case or of a ‘sink
parallel to the pseudolinee2 in the degenerate case.

Conversely, Lemma 4.2.1 can be obtained from oriented matroid programming.
direct proof is an easy exercise on pseudoline arrangements.✷
Proof of surjectivity. LetR be a bounded region of the pseudoline arrangement cont
in e+

1 . We have do define a(1,0)-basisB = {e1 < ep < eq} such that theR is the image of
B by the active basis-reorientation correspondence of Definition 4.1.

Let v be the sink of the restriction toR of the active cocircuit graph given b
Lemma 4.2.1,e < e′ be the two edges ofR incident tov. Necessarily the two pseudolin
ep andeq containv, the pseudolineep is smallest among the pseudolines containingv, and
we haveeq = e or eq = e′.

If e = ep , then necessarilye′ = eq . Supposeep < e. We distinguish several cases.

(a) ep is not parallel toe2.
(a1) If both e and e′ are not parallel toe2, let Q respectivelyQ′ be the active

quadrant defined by the pseudolinesep ande respectivelye′ as in case (1) on
Definition 4.1. Exactly one ofQ or Q′ containsR: we seteq = e if R ⊂ Q

respectivelyeq = e′ if R ⊂Q′.
(a2) If e respectivelye′ is parallel toe2, settingeq = e respectivelyeq = e′, we have

case (2b) of Definition 4.1.
(b) ep is parallel toe2.

Thene ande′ are not parallel toe2. Let em be the smallest pseudoline not parallel toe2.

(b1) If v is not inem, theneq is defined as in (a1), with active quadrants defined by c
(2a) of Definition 4.1.

(b2) If v is onem, theneq is defined as in (a1), with active quadrants defined by cas
of Definition 4.1. ✷

We complete the description of the canonical active basis-reorientation correspon
by considering internal bases of activities 2 and 3. As in Section 3 for the general un
case, the construction is done by means of active partitions defined directly in each ca
to parallel elements, the relevant minors, of rank� 2, are uniform, and results of Section
apply in very simple cases. We omit proofs. In each case, we indicate the relevan
of D13 in Fig. 7. As in Definition 4.1, we denote byem the smallest pseudoline such th
{e1, e2, em} is not a circuit.

Definition 4.5. (1)B = {e1 < e2 < eq} (activity 2).
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LetL be the set of pseudolines containing the intersection{v, v′} of the pseudolinese1

andeq of B.

(1a) eq is the smallest element ofL \ {e1} (bases 125, 127, 128, 129 of Fig. 7).

We have to considerM ′ obtained fromM/e1 by deleting all nonsmallest elements
each parallel class (theactive partitionis E = {e1} + {e2, e3, . . .}). This oriented matroid
is uniform with rank 2.

In this caseem does not containv (otherwisem = q andeq is internally active). One
regionR is incident tov, bounded by a pseudosegment not meetinge1 ∩ e2 with one
extremity ine1 ∩ eq and the other ine1 ∩ em. The other region is−E\{e1}R.

(1b) The smallest element ofL \ {e1} is ep , and we haveep �= eq (bases 126, 12A, 12B
12C of Fig. 7).

We have to considerM ′ =M(L). The active partition isE = L+E \L. This oriented
matroid is uniform with rank 2. One regionR is incident tov, bounded byeq , and is
contained in the side ofeq containingep . The other region is−E\LR.

(2) B = {e1, em, eq} (activity 2) (bases 134, 14D of Fig. 7).

As in case (1b), the active partition isE = L+ (E \L). One regionR is incident tov,
bounded byeq , and contained in the side ofeq containinge2. The other region is−E\LR.
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(3) B = {e1, e2, em} (activity 3) (base 124 of Fig. 7).

LetL be the set of pseudolines containing the intersection of the pseudolinese1 ande2.
The active partition isE = {e1} + (L \ {e1})+ (E \L). The 4 regions associated withB in
e+

1 are those incident toe1 ∩ e2 and bounded bye1.

Figure 7 shows the canonical active basis-reorientation correspondence for in
bases and acyclic regions. The gray sector inside a bounded region indicates the
v of Definition 4.1 and the pseudolineeq (which supports it, whereas the other edge of
region incident tov does not).

Theorem 4.6. The canonical active basis-reorientation correspondence between
internal bases of an ordered oriented matroid of rank3 and its acyclic reorientations ha
the required multiplicities.

We omit the proof. We end this section by the counterpart of Proposition 3.9 for ra
matroids. Either by an easy direct proof, or by using the fact that a rank-3 oriented m
is Euclidean [1, Chapter 10], it can be shown that the active cocircuit graph of a r
oriented matroid has no directed cycles.

Proposition 4.7. LetM be a rank-3 ordered oriented matroid onE = {e1 < e2 < · · ·}. The
active basis-reorientation correspondence for(1,0) activities is uniquely determined b
the following two properties.

(i) The correspondence induces a bijection between(1,0) bases and bounded regions
the pseudoline arrangement representingM.

(ii) LetB = {e1 < ep < eq} with ep > e2 be a(1,0)-basis, andR be the bounded regio
image ofB. Then, the intersection of the pseudolinesep and eq is a vertex inciden
toR, and the pseudolineeq supports an edge ofR.

Proof. The proof of Proposition 4.7 is similar to the proof of Proposition 3.9.✷
In terms of programming, in the rank-3 acyclic case, the basis associated with a bo

region is theoptimalbasis for an extended linear program with respect to the total o
The elementem is used to define the optimal vertex whene2 does not suffice. Moreove
a basis defines two nested faceseq andep ∩ eq which have to be optimized, yielding a fir
example of flag matroid programming.
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